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We generalize a wide class of time-continuous microscopic traffic models to include

aspects of driver behaviour not captured by these models. Specifically, we consider

reaction times, (ii) estimation errors, (iii) looking several vehicles ahead (spatial anti

and (iv) temporal anticipation. The estimation errors are modelled as stochasti

processes and lead to time-correlated fluctuations of the acceleration.

We show that the destabilizing effects of reaction times and estimation errors can e

be compensated for by spatial and temporal anticipation, that is, the combin

stabilizing and destabilizing effects results in the same qualitative macroscopic dyn

that of the, respectively, underlying simple car-following model. In many cases, thi

the use of simplified, physics-oriented models with a few parameters only. Alth

qualitative dynamics is unchanged, multi-anticipation increase both spatial and

scales of stop-and-go waves and other complex patterns of congested traffic in agreem

real traffic data. Remarkably, the anticipation allows accident-free smooth driving in

traffic situations even if reaction times exceed typical time headways.
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1. Introduction
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The nature of human driving behaviour and the differences with the au
driving implemented in most micromodels is a controversial topic in traffic
[1–8]. Finite reaction times and estimation capabilities impair the human
performance and stability compared to automated driving, sometime
‘adaptive cruise control’ (ACC). However, unlike machines, human drivers r
scan the traffic situation several vehicles ahead and anticipate future traffic si
leading, in turn, to an increased stability.

The question arises, how this behaviour affects the overall driving behav
performance, and whether the stabilizing effects (such as anticipation)
destabilizing effects (like reaction times and estimation errors) dominate, o
effectively cancel out each other. The answers to these questions are cru
determining the influence of a growing number of vehicles equipped with au
acceleration control on the overall traffic flow. Up to now, there is not eve
about the sign of the effect. Some investigations predict a positive effect [
others are more pessimistic [10].

Single aspects of human driving behaviour have been investigated in the p
example, it is well known that traffic instabilities increase with the reaction
of the drivers. Finite reaction times in time-continuous models are implem
evaluating the right-hand side of the equation for the acceleration (or vel
some previous time t� T 0 with T 040 [11–13]. Reaction times in time-con
models have been modelled as early as 1961 by Newell [11]. Recently, the
velocity model (OVM) [14] has been extended to include finite reaction tim
However, the Newell model has no dynamic velocity, and the OVM with del
out to be accident-free only for unrealistically small reaction times [15].

To overcome this deficiency, Davis [13] has introduced (among other m
tions) an anticipation of the expected future gap to the front vehicle
accident-free driving at reaction times of 1 s. However, reaction times were
implemented in Ref. [13] since the own velocity, which is one of the stimu
right-hand side of the acceleration equation, has been taken at the actual rat
at the delayed time.

Another approach to model temporal anticipation consists in includ
acceleration of the preceding vehicles in the input variables of the model. For
automata (CA), this has been implemented by introducing a binary-value
light’ variable [16].

To our knowledge, there exists no car-following model exhibiting platoon
(with respect to all stimuli) for reaction times exceeding half of the time hea
the platoon vehicles. Human drivers, however, accomplish this task easily:
(not yet congested) traffic, the most probable time headways on German
are 0.9–1 s [17,18] which is of the same order as typical reaction times [19]. H
single-vehicle data for German freeways [17,18] indicate that some drivers
headways as low as 0.3 s, which is below the reaction time of even a very
driver by a factor of at least 2–3 [19]. For principal reasons, therefore, safe d
not possible in this case when considering only the immediate vehicle in fro
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into account next-nearest neighbours and further vehicles ahead as we
‘spatial anticipation’ or ‘multi-anticipation’ has been applied to the OVM
to the Gipps model [21] as well as to some CA model [16,22]. As expec
resulting models show a higher stability than the original model. Howe
stability of the aforementioned models is still smaller than that of human
Furthermore, they display unrealistic behaviour such as clustering in pa
or too elevated propagation velocities of perturbations in congested
ðvg ¼ �30 km=hÞ [20].

Imperfect estimation capabilities often serve as motivation or justific
introduce stochastic terms into micromodels such as the Gipps model [23]
Ref. [2]). Most CA require fluctuating terms as well. In nearly all th
fluctuations are assumed to be d-correlated in time and acting directly
accelerations. An important feature of human estimation errors, howev
certain persistency. If one underestimates, say, the distance at time t, the pro
of underestimating it at the next time step (which typically is less than 1
future) is high as well. Another source leading to temporally correlated acce
noise lies in the concept of ‘action points’ modelling the tendency of human
to actively adapt to the traffic situation, i.e., to change the acceleration
discrete times [24].

In this paper, we propose the human driver (meta-)model (HDM) in term
extensions to basic physics-oriented traffic models incorporating into these
(i) finite reaction times, (ii) estimation errors, (iii) spatial anticipati
(iv) temporal anticipation. The class of suitable basic models is chara
by continuous acceleration functions depending on the velocity, t
and the relative velocity with respect to the preceding car and includes, for e
the OVM [14], the Gipps model [23], the velocity-difference mod
the intelligent-driver model (IDM) [26], and the boundedly rational drive
[27,28].

For matters of illustration, we will apply the HDM to the IDM [26], whi
built-in anticipative and smooth braking strategy, and which reaches goo
in a first independent attempt to benchmark micromodels based on rea
data [29].

In Section 2, we will formulate the HDM in terms of the acceleration fun
the basic model. In Section 3 we will simulate the stability of vehicle plato
function of the reaction time T 0 and the number of anticipated vehicles na.
string stability for arbitrarily long platoons for reaction times of up
Furthermore, we simulate the macroscopic traffic dynamics for an open
containing a flow-conserving bottleneck [26,30]. We find that mult
anticipation ðna41Þ can compensate for the destabilizing effects of reactio
and estimation errors. The numerically determined phase diagram
corresponding parameter space gives the conditions under which simple
models describe the traffic dynamics correctly. In the concluding Sectio
suggest applications and further investigations and discuss some aspects o
driving that are not included in the HDM.



2. Modelling human driver behaviour
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Let us formulate the HDM as a meta-model applicable to time-con
micromodels (car-following models) of the general form

dva

dt
¼ amicðsa; va;DvaÞ ,

where the own velocity va, the net distance sa, and the velocity difference D
leading vehicle serve as stimuli determining the acceleration amic [31]. This
basic models is characterized by: (i) instantaneous reaction, (ii) reaction on
immediate predecessor, and (iii) infinitely exact estimating capabilities of
regarding the input stimuli s, v, and Dv, which also means that there
fluctuations. In some sense, such models describe driving behaviour similar
systems.

For the sake of simplicity, we will restrict ourselves to single-lane long
dynamics. Furthermore, we will not include adaptations of drivers to th
conditions of the last few minutes. This so-called ‘memory effect’ is d
elsewhere [32].

2.1. Finite reaction time

A reaction time T 0 is implemented simply by evaluating the right-hand sid
(1) at time t� T 0. If T 0 is not a multiple of the update time interval, we pr
linear interpolation according to

xðt� T 0Þ ¼ bxt�n�1 þ ð1� bÞxt�n ,

where x denotes any quantity on the right-hand side of (1) such as sa, va, or
xt�n denotes this quantity taken n time steps before the actual step. Here,
integer part of T 0=Dt, and the weight factor of the linear interpolation is
b ¼ T 0=Dt� n. We emphasize that all input stimuli sa, va, and Dva are eval
the delayed time.

Notice that the reaction time T 0 is sometimes set equal to the ‘safety’ time-h
T. It is, however, essential to distinguish between these times conceptually. W
time headway T is a characteristic parameter of the driving style, the reaction
is essentially a physiological parameter and, consequently, at most weakly co
with T. We point out that both the time headway T and the reaction time T 0

distinguished from the numerical update time step Dt, which is sometimes erro
interpreted as a reaction time as well. For example, in our simulations, an upd
step of 2 s has about the same effect as a reaction time of 1 s while the re
essentially identical for any update time step below 0.2 s.

2.2. Imperfect estimation capabilities

We will now model estimation errors for the net distance s and the
difference Dv to the preceding vehicle. Since the velocity itself can be obta
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investigations (for an overview see [2, p. 190] it is known that the uncertain
estimation of Dv is proportional to the distance, i.e., one can estimate the
collision (TTC) s=jDvj with a constant uncertainty [33]. For the distance i
specify the estimation error in a relative way by assuming a constant v
coefficient Vs of the errors. Furthermore, in contrast to other stochastic micr
[34], we take into account a finite persistence of estimation errors by modelli
as a Wiener process [35]. This leads to the following nonlinear stochastic p
for the distance and the velocity difference:

sestðtÞ ¼ sðtÞ expðVswsðtÞÞ ,

ðDvÞest
ðtÞ ¼ DvðtÞ þ sðtÞ rcwDvðtÞ ,

where V s ¼ ss=hsi with s2s ¼ hðs� hsiÞ
2
i is the variation coefficient of the

estimate, and 1=rc, a measure for the average estimation error of the
collision. The stochastic variables wsðtÞ and wDvðtÞ obey independent
processes wðtÞ of variance 1 with correlation times t defined by [35]

dw

dt
¼ �

w

t
þ

ffiffiffi
2

t

r
xðtÞ

with

hxi ¼ 0; hxðtÞxðt0Þi ¼ dðt� t0Þ .

In the explicit numerical update from time step t to step tþ Dt, we impl
the Wiener processes by the approximations

wtþDt ¼ e�Dt=twt þ

ffiffiffiffiffiffiffiffi
2Dt

t

r
Zt ,

where the fZtg are independent realizations of a Gaussian distributed quan
zero mean and unit variance. We have checked numerically that the update
(7) satisfies the fluctuation-dissipation theorem hw2

t i ¼ 1 for any update time
satisfying Dt5t.

Simulations have shown that, in agreement with expectation, traffic becom
unstable with increasing values of Vs and rc. To compare the influenc
temporally correlated multiplicative HDM noise with more convention
acceleration noise, we have repeated the simulations of Section 3 w
deterministic HDM (Vs ¼ rc ¼ 0) augmented by an additive noise term
at the right-hand side of the acceleration equation. Remarkably, value
fluctuation strength Qa can be found where the dynamics did not change es
with respect to the more realistic stochastic terms described by V s, rc, and
the more detailed representation of stochasticity by the HDM can be used
the conventional noise strength Qa (which does not have any intuitive mea
better justified noise sources.



2.3. Temporal anticipation
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We will assume that drivers are aware of their finite reaction time and a
the traffic situation accordingly. Besides anticipating the future distance [13]
anticipate the future velocity using a constant-acceleration heuristics. The co
effects of a finite reaction time, estimation errors and temporal anticipation
the following input variables for the underlying micromodel (1):

dv

dt
¼ amicðs0a; v

0
a;Dv0aÞ

with

s0aðtÞ ¼ ½s
est
a � T 0Dvest

a �t�T 0 ,

v0aðtÞ ¼ ½v
est
a þ T 0aa�t�T 0

and

Dv0aðtÞ ¼ Dvest
a ðt� T 0Þ .

We did not apply the constant-acceleration heuristics for the anticipatio
future velocity difference or the future distance, as the accelerations of other
cannot be estimated reliably by human drivers. Instead, we have applied the
constant-velocity heuristics for these cases.

Notice that the anticipation terms discussed in this subsection (which
contain any additional model parameters) are specifically designed to com
for the reaction time by means of plausible heuristics. They are to be distin
from ‘anticipation’ terms in some models aiming at collision-free driving in
case’ scenarios (sudden braking of the preceding vehicle to a standstill) w
braking deceleration is limited. Such terms typically depend on the
difference and are included, e.g., in the Gipps model, in the IDM, and
CA [22,36], but notably not in the OVM. The HDM is most effective when
basic model with this kind of anticipation.

2.4. Spatial anticipation for several vehicles ahead
el into a
nsidered
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(12)

used to

up the
a for the
Let us now split up the acceleration of the underlying microscopic mod
single-vehicle acceleration on a nearly empty road depending on the co
vehicle a only, and a braking deceleration taking into account the vehicle
interaction with the preceding vehicle:

amicðsa; va;DvaÞ:¼afree
a þ aintðsa; va;DvaÞ .

Notice that this decomposition of the acceleration has already been
formulate a lane-changing model for a wide class of micromodels [37].

Next, we model the reaction to several vehicles ahead just by summing
corresponding vehicle–vehicle pair interactions aint

ab from vehicle b to vehicle
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d

dt
vaðtÞ ¼ afree

a þ
Xa�1

b¼a�na

aint
ab ,

where all distances, velocities and velocity differences on the right-hand side a
by (9)–(11). Each pair interaction between vehicle a and vehicle b is specifie

aint
ab ¼ aintðsab; va; va � vbÞ ,

where

sab ¼
Xa

j¼bþ1

sj

is the sum of all net gaps between the vehicles a and b.

2.5. Applying the HDM extensions to the intelligent driver model (IDM)

In this paper, we will apply the HDM extensions to the IDM. In this mo
the acceleration of each vehicle a is assumed to be a continuous functio
velocity va, the net distance gap sa, and the velocity difference (approaching r
to the leading vehicle:

_va ¼ a 1�
va

v0

� �4

�
s�ðva;DvaÞ

sa

� �2
" #

.

The IDM acceleration consists of a free acceleration afree ¼ a½1� ðv=
approaching the desired velocity v0 with an acceleration slightly below a,
braking interaction aint ¼ �aðs�=sÞ2, where the actual gap sa is compared
‘desired minimum gap’

s�ðv;DvÞ ¼ s0 þ vT þ
vDv

2
ffiffiffiffiffi
ab
p

which is specified by the sum of the minimum distance s0, the velocity-de
safety distance vT corresponding to the time headway T, and a dynamic p
dynamic part implements an accident-free ‘intelligent’ braking strategy that,
all situations, limits braking decelerations to the ‘comfortable deceleration’ b

that all IDM parameters have an intuitive meaning. By an appropriate scaling
and time, the number of parameters can be reduced from five to three.

2.5.1. Renormalization for the IDM

Remarkably, there exists a closed-form solution of the multi-anticipati
equilibrium distance as a function of the velocity,

seðvÞ ¼ gs�ðv; 0Þ 1�
v

v0

� �d
" #�1=2

,
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g ¼
Xna

a¼1

1

a2
.

The equilibrium distance seðvÞ can be transformed to that of the original
renormalizing the relevant IDM parameters appearing in s�ðv; 0Þ:

sren
0 ¼

s0

g
; Tren ¼

T

g
.

The above renormalization will be applied to all simulations of this paper
that, in the limiting case of anticipation to arbitrarily many vehicles w
limna!1 gðnaÞ ¼ p=

ffiffiffi
6
p
¼ 1:283. This means that the combined effects of

nearest-neighbour interactions would lead to an increase in the equilibrium
by just about 28%.

2.6. Summary of the human driver model (HDM)

The HDM is formulated in terms of a meta-model introducing reactio
finite estimation capabilities, temporal anticipation and multi-vehicle anticip
a wide class of simple micromodels. The model has two deterministic par
namely the reaction time T 0 and the number na of anticipated vehicle
influences will be investigated below.

The only stochastic contributions come from modeling finite es
capabilities. The stochastic sources Vs and rc characterize the degree
estimation uncertainty of the drivers, while t denotes the correlation time o
The limit t! 0 corresponds to multiplicative white acceleration noise while
corresponds to ‘frozen’ error amplitudes, i.e., de facto heterogeneous tra
human-driver extensions are switched off and the original basic model is reco
T 0 ¼ 0, na ¼ 1, and V s ¼ rc ¼ 0.

The HDM–IDM combination (i.e., the application of the HDM to the IDM
total number of ten parameters which can be reduced to eight by an app
scaling of space and time. Replacing the HDM noise by white additi
(cf. Section 2.2) allows a further reduction to six parameters while reta
essential properties.
3. Simulations and results

tters of
ssuming

(21)
In this section, we apply the HDM extensions to the IDM for ma
illustration. In all simulations, we have used an explicit integration scheme a
constant accelerations between each update time interval Dt according to

vaðtþ DtÞ ¼ vaðtÞ þ aaðtÞDt ,

xaðtþ DtÞ ¼ xaðtÞ þ vaðtÞDtþ 1
2
aaðtÞðDtÞ2 .
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Table 1

Parameters of the human-driver extensions with the values used in this paper

Parameter Value

Reaction time T 0 0–2.0 s

Number of anticipated vehicles, na 1–7

Relative distance error, Vs 5%

Inverse TTC error, rc 0.01/s

Error correlation time, t 20 s

Unless stated otherwise, we have used the IDM parameters v0 ¼ 128km=h, T ¼ 1:1 s, a ¼ 1m=s2,
b ¼ 1:5m=s2, and s0 ¼ 2m. In Section 3.1, we have changed v0 and T to 115 km/h and 1.5 s, respectively.

M. Treiber et al. / Physica A 360 (2006) 71–88 79
Table 1. In the simulations, we will mainly study the influences of the react
T 0 and the number na of anticipated vehicles.

3.1. String stability of a platoon

We have investigated the stability of the HDM as a function of the react
T 0 and the number na of anticipated vehicles by simulating a platoon of 100
following an externally controlled lead vehicle. As in a similar study for th
[15,13], the lead vehicle drives at vlead ¼ 15:34m=s for the first 100 s b
decelerates with �0:7m=s2 to 14.0m/s and continues with this velocity u
simulation ends at 2500 s.

For the platoon vehicles, we use the IDM parameters v0 ¼ 32m=s and T ¼

obtain the same desired velocity and initial equilibrium gap (se ¼ 25:7m
previous studies [15,13]. The other IDM parameters are a ¼ 1m=s2, b ¼ 1
and s0 ¼ 2m. If na is larger than the number of preceding vehicles (which can
for the first vehicles of the platoon) then na is reduced accordingly. Fluctuatio
been neglected in this scenario. As initial conditions, we have assumed the pl
be in equilibrium, i.e., the initial velocities of all platoon vehicles were equa
and the gaps equal to se so that the initial HDM (and IDM) accelerations we
to zero.

We distinguish three stability regimes: (i) String stability, i.e., all pertu
introduced by the deceleration of the lead vehicles are damped away
oscillatory regime, where perturbations increase but do not lead to crashes,
an instability with accidents. The condition for a simulation to be in the cras
(iii) is fulfilled if there is some time t and some vehicle a so that saðtÞo
condition for string stability is fulfilled if j_vaðtÞjo2m=s2 at all times (inclu
period where the leading vehicle decelerates) and for all vehicles, and add
j_vaðtÞjo0:01m=s2 for all vehicles towards the end of the simulation. Fi
neither the conditions for the crash regime nor that for the stable regime are
the simulation result is attributed to the oscillatory regime.

Fig. 1 shows the three stability regimes as a function of the reaction tim
the platoon size n for spatial anticipations of na ¼ 1 and 5 vehicles, respectiv
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Fig. 1. Stability of a platoon of identical vehicles as a function of the platoon size and the reaction time T 0

for the situation described in Section 3.1 (a) assuming conventional follow-the-leader behaviour (na ¼ 1)

and (b) a reaction to na ¼ 5 vehicles. The simulation is for a time headway of T ¼ 1:5 s, a numerical update

time interval of Dt ¼ 0:1 s, and a desired velocity v0 ¼ 32m=s. The other parameters are given in Table 1.

In the ‘stable’ phase, all perturbations are damped away. In the oscillatory regime, the perturbations

increase, but do not lead to crashes.
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anticipation), a platoon of 100 vehicles is stable for reaction times o
T 0c1 ¼ 0:8 s. Test runs with larger platoon sizes (up to 1000 vehicles) did not
different thresholds suggesting that stability for a platoon size of 100 es
means stability for arbitrarily large platoon sizes.

Increasing the spatial anticipation to na ¼ 5 vehicles shifted the threshol
delay time T 0 for string stability of a platoon of 100 vehicles to T 0c1
Increasing the delay time T 0 beyond the stability threshold led to strong osc
of the platoon. Crashes, however, occurred only when T 0 exceeded a
threshold T 0c2. Remarkably, for na ¼ 5 or more vehicles, the observed t
T 0c2 ¼ 1:8 s is larger than the equilibrium time headway se=vlead ¼ 1:68
detailed investigations reveal that crashes are triggered either directly
reactions to deceleration maneuvers or indirectly as a consequence of th
instability. Further increasing na do not change the thresholds significantly

3.2. Open system with a bottleneck

In this section, we examine the opposite influences of the driver reaction
and the spatial anticipation na on the stability of traffic and the occurrin
states in a more complex and realistic situation.

We have simulated a single-lane road section of total length 20 km
bottleneck and open boundaries assuming identical drivers and vehicles o
l ¼ 5m, whose parameters are given in Table 1. The update time interva
numerical integration was Dt ¼ 0:1 s. Each simulation run covered a time in
3 h. We initialized the simulations with very light traffic of density 1 vehicle
set all initial velocities to 100 km/h.

We have simulated idealized rush-hour conditions by increasing the inflo
at the upstream boundary linearly from 100 veh/h at t ¼ 022100 veh=h at
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road capacity QB � 2000 veh=h at the bottleneck (the maximum of the fund
diagram), a traffic breakdown is always provoked, irrespective of the sta
traffic. We have implemented a flow-conserving bottleneck at 18 kmpx

by linearly increasing the IDM parameter T from 1.1 to 1.65 s in the
18:0 kmpxp18:5 km, setting T ¼ 1:65 s for 18:5 kmpxp19:5 km, and
decreasing T from 1.65 to 1.1 s in the region 19:5 kmpxp20:0 km (see Ref.
justification of this treatment of flow-conserving bottlenecks).

In order to determine the spatiotemporal dynamics, we plot, at an
spatiotemporal point ðx; tÞ, the locally averaged velocity of the vehicle tra
nearby. The averaging filter [38] had half-widths of 1min and 0.4 km, resp

We have simulated the open system with na ¼ 1 to 7. For each value of na,
varied the reaction time in steps of 0.05 s. Fig. 3 shows typical example
spatiotemporal patterns occurring in the simulations. By associating qua
different simulation results with different dynamical phases, we obtained
diagram in the space spanned by na and T 0 (see Fig. 2). The different sta
determined using smoothed velocity data, as shown in Fig. 3.

Specifically, a congested state may be either localized (localized cluster
extended (extended congested traffic (ECT)). The criterion to discriminate
these two types of congested traffic is the width of the congested region w
LCs, is constant (and typically less than 1 km), while the width of ECT is
and depend in particular on the inflow. The transition between LC and
slightly hysteretic. Furthermore, there are transitions from both LC and EC
traffic (FT) which are hysteretic as well.

Within ECT, there exist three dynamical phases separated by continuou
transitions. As order parameter to distinguish between HCT (cf. Fig. 3
oscillating congested traffic (OCT, cf. Figs. 3(a) and 4(c)) we have used the va
of the temporal velocity variations in the congested region sufficiently upst
the bottleneck, where it is essentially constant with respect to space and time
in the case of HCT, y depends mainly on the fluctuating forces and remain
1 ðm=sÞ2, it jumps to more than 100 ðm=sÞ2 and essentially becomes indepe
the fluctuation strength in the case of OCT. The third dynamical ECT phase
waves (cf. Figs. 3(c) and 4(b)). In contrast to OCT, TSG states reach the fre
of the fundamental diagram, i.e., there are uncongested areas between the co
ones. Nevertheless, the OCT and TSG states are hard to distinguish as they
separated by a hysteretic phase transition.

Within localized clusters, we have observed a sharp transition betwe
moving upstream at a constant velocity of about vg ¼ �15 km=h (ML
clusters fixed at the bottleneck (PLC). In contrast to the IDM, we obs
coexistence of both localized dynamical phases (Fig. 3(d)), as requ
observations [39].

Let us point out that our system is markedly different from the open
proposed by Kolomeisky et al. [40] where all phases are triggered by bo
rather than by a bottleneck and which essentially contains only FT and t
state. Specifically, one can associate the ‘high-density’ state of Ref. [40] wi
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Fig. 3. Spatiotemporal dynamics of typical traffic states of the phase diagram of Fig. 2: (a) the special case

of the IDM (na ¼ 1, T 0 ¼ 0 s) leads to oscillatory congested traffic (OCT); (b) na ¼ 5 anticipated vehicles

and a reaction time T 0 ¼ 0:9 s leads to homogeneous congestion (HCT); even larger reaction times lead to

(c) TSG (na ¼ 5, T 0 ¼ 1:1 s) or (d) a combination of MLC and PLC (na ¼ 6, T 0 ¼ 1:2 s). All data are

smoothed with half-widths of 1min and 0.4 km, respectively.
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Fig. 2. Phase diagram of congested traffic states in the phase space spanned by the number na of

anticipated vehicles and the reaction time T 0 in the open system with a bottleneck as described in the text.

The dynamic phases homogeneous congested traffic (HCT), oscillatory congested traffic (OCT), triggered

stop-and-go (TSG), and moving and pinned localized clusters (MLC/PLC) are discussed in the main text.
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Fig. 4. Spatiotemporal dynamics of congested traffic on the German freeway A9 South near Munich: (a)

sketch of the freeway; (b) stop-and-go traffic (TSG) caused by the intersection I1 (cf. Fig. 3c); and (c) OCT

caused by the intersection I2 (cf. Fig. 3a). The spatiotemporal data were obtained from 1min data at the

detector positions indicated in (a), using the adaptive smoothing method (ASM) [38] with smoothing half-

widths of 1min and 0.4 km, respectively.
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finally the ‘low-density’ state corresponds to FT.
All of the above dynamic phases can be either obtained by varying the infl

the bottleneck capacity [41,42,26], or by varying the model parameters, whic
in the following. The left lower corner of Fig. 2 corresponds to the special ca
IDM, i.e., to the case of zero reaction time (T 0 ¼ 0) and consideration
immediate front vehicle only (na ¼ 1). In this case, the simulation results in
the boundary conditions specified before (see Figs. 3(a) and 5(a)).

Varying na and T 0 leads to the following main results:

(i) Traffic stability increases drastically, when the spatial anticipation is i

na46.
pattern
different
from na ¼ 1 to 6, while the stability remains essentially unchanged for
(ii) For a sufficiently large number of anticipated vehicles, the congestion

becomes stable corresponding to HCT as shown in Fig. 3(b). Thus,

th as in

rameters

crashes.
ented in
traffic states can be produced not only by varying the bottleneck streng
the phase diagram proposed in Ref. [41], but also by varying model pa
that influence stability.

(iii) Increasing the reaction time T 0 destabilizes traffic and finally leads to
(iv) The other dynamic congested traffic states of the phase diagram pres
SG) (cf.
Ref. [41] are found as well, specifically, triggered stop-and-go waves (T

ig. 3(d)).
Fig. 3(c)). In addition, we found a coexistence of MLC and PLC (see F



(v) The results are robust against variations of the stochastic HDM parameters or
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Fig. 5. Velocity time series by a virtual detector at x ¼ 14km for (a) na ¼ 1, T 0 ¼ 0 s, and (b) na ¼ 5,

T 0 ¼ 1:1 s. Notice the increase of the oscillation wavelength in the scenario (b) with anticipation.
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rom the
when the correlated noise is replaced by white acceleration noise.

We have compared the spatiotemporal dynamics with traffic data f

tor data
ach lane
how the
ively. In

plied the
lengths
ion, i.e.,
set to
e have

the first
the last
tures in
ures are
, besides
agation

hown in
emporal
German freeway A9 South near Munich. For this freeway, aggregated detec
(vehicle counts and average velocities for 1min intervals) are available for e
at the locations indicated in Fig. 4(a). The plots (b) and (c) of Fig. 4 s
spatiotemporal dynamics of the local velocity for TSG and OCT, respect
both cases, these states were caused by intersections acting as bottlenecks.

To obtain the spatiotemporal dynamics shown in these plots, we have ap
ASM [38] to the lane-averages of the velocity data. The smoothing times and
of the ASM are set to the values used for the averaging filter in the simulat
to 1min and 0.4 km, respectively. The other ASM parameters were
vc1 ¼ 30 km=h, vc2 ¼ 60 km=h, cfree ¼ 80 km=h, and ccong ¼ �15 km=h [38]. W
checked that the result was essentially unchanged when changing any of
three parameters by factors between 0.7 and 1.5. In contrast, changes of
parameter ccong representing the propagation velocity of collective struc
congested traffic influence the result. Artificial shifts of the congested struct
observed if ccong is outside a range of about ½�17;�14 km=h�. This means
making spatiotemporal plots, the ASM can be used to determine the prop
velocity ccong.

By comparing the simulation results Fig. 3(a) and (c) with the traffic data s
Fig. 4(c) and (b), respectively, one sees a qualitative agreement of the spatiot
dynamics in many respects. Particularly,

(i) the congestion pattern is triggered by a bottleneck,

d at the
(ii) the downstream front of the congestion pattern is stationary and locate

position of the bottleneck,

near the
(iii) traffic is essentially non-oscillatory in a region of about 1 km width

bottleneck (this is sometimes called the ‘pinch region’ [43]),

ropagat-
(iv) further upstream, the congested traffic consists of stop-and-go waves p

ing upstream at a constant velocity ccong,

(v) the period t of the oscillations is variable.



Isolated and coexisting MLCs and PLCs as in Fig. 3(d) have been observed in
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traffic data as well [39]. Particularly, PLC and MLC states are shown in Fig
10 of Ref. [39]. HCT states and even combined states of one or more PLCs
or more isolated MLCs were also observed in Ref. [39].

In addition to these qualitative aspects, there exists a nearly qua
agreement with respect to (i) the propagation velocity ccong ¼ �15 km
(ii) the range of the oscillation periods t between 6 and 40min (notice that m
following models yield too short periods). The latter point is illustr
comparing Fig. 3(a) (no reaction time and no anticipation) and Fig. 3(c
reaction time and anticipation) with the data (Fig. 4).

In summary, we have shown that the destabilizing effects of finite reacti
can be compensated to a large extent by spatial and temporal anticipation s
the resulting stability and dynamics are similar to the case of the IDM w
anticipation and reaction time. However, besides stability issues, the
simulation results agree better with empirical traffic data in the following
(i) Compared to the underlying IDM, the HDM simulation shows larger os
periods in the case of OCT and, generally, lower velocity gradients. (ii) Co
PLCs and MLCs are observed both in the HDM and in real traffic data [39]
in the IDM. (iii) Near the bottleneck, the HDM regularly produces t
relatively high flow and density (‘pinch region’).
4. Discussion

clearly
bility of
oriented
h as the
he IDM
such as

ion, the
ity data

work so
e above
s when

n times
ipations:
he good
lance of
mulated
d a wide
ositions,
applying
Finite reaction times and errors in estimating the input variables are
essential factors of driver behaviour affecting the performance and sta
vehicular traffic. However, these aspects are rarely considered in physics-
traffic modelling. Nevertheless, the simple models used by physicists suc
OVM and its generalizations [14,13], the velocity-difference model [25], or t
allow to describe many, particularly macroscopic, aspects of traffic dynamics
the spatiotemporal dynamics of the various types of traffic congest
propagation of stop-and-go traffic, or even the scattering of flow-dens
points of ‘synchronized traffic’ [4].

The question arises why, despite their obvious shortcomings, these models
well. This question became more pressing after it turned out that all of th
models (including the IDM) produce unrealistic dynamics and crashe
simulating these models with realistic reaction times (of the order of 1 s).

In this work, we have shown that the destabilizing effects of reactio
and estimation errors can be compensated for by spatial and temporal antic
One obtains essentially the same longitudinal dynamics, which explains t
performance of the underlying simple models. In order to put this ba
stabilizing and destabilizing effects into a more general context, we have for
the human-driver model (HDM) as a meta-model that can be used to exten
class of car-following models, where the acceleration depends only on the p
velocities and accelerations of the own and the preceding vehicle. By
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balance conditions and the remaining differences in the dynamics. This
validity criteria for the applicability of simpler physics-oriented car-f
models.

Since the basic models have both the advantages and limitations of ACC
one can investigate the impact of ACC vehicles on the capacity and stabili
overall traffic simply by simulating a mixture of, e.g., IDM and HDM
Furthermore, one gets the nontrivial result that hypothetical future traffic co
predominantly of automated vehicles will exhibit macroscopic dynamics si
that of the actual traffic, although the driving strategy would be markedly d

While finite reaction times have been investigated for more than 40 year
HDM–IDM combination is, to our knowledge, the first car-following
allowing accident-free driving at realistic accelerations in all traffic situat
reaction times of the order of and even exceeding the time headway. A close
quantitative features of stop-and-go traffic or oscillations shows that, com
simulations of the original IDM, the HDM extensions reduce the g
of transitions between free and congested traffic and increase the wavele
stop-and-go waves, in agreement with empirical data. This suggests tha
anticipation is an essential aspect of the driver behaviour.

A comparison of the stochastic HDM expressions for imperfect es
capabilities with other stochastic micromodels is in order. While fluctuatin
were first introduced to traffic models more than 20 years ago [23], t
prominent example of stochastic traffic models are CA of the Nagel–Schrec
type [34] and extensions thereof. There is, however, a qualitative d
compared with most continuous models: Fluctuation terms change the qu
dynamics of many CA models. Therefore, they must be carefully chosen
plausible results. In contrast, the qualitative dynamics typically remains t
when fluctuations are added to car-following models via the HDM ext
Having modelled the estimation errors by a stochastic Wiener process with
correlation time, we have included the persistence of estimation errors for a
time interval.

The phase diagram shown in Fig. 2 contained qualitatively th
spatiotemporal congested states as found in Refs. [41,26]. At first sight, th
surprising. Besides using a different model, the control parameters makin
phase space were extrinsic in the previous work, while the phase space is spa
intrinsic model parameters in the present work. A closer look at the
expressions for the phase boundaries [41] containing both extrinsic flow pa
and intrinsic stability limits indicates that variations of both kinds of
parameters can lead to phase transitions.

From a control-theoretical point of view, the HDM extensions impl
continuous response to delayed and noisy input stimuli. Alternatively,
driving behaviour can be modelled by so-called action-point models, w
response changes discontinuously whenever certain boundaries in the space
by the input stimuli are crossed [44,24,21], but these thresholds cannot b
confirmed by empirical data.



Finally, it should be mentioned that, in this work, we have considered only
n) and
different
moothly
aper.
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longitudinal aspects of human driving (acceleration and deceleratio
implemented only identical driver–vehicle units. Platooning effects due to
driving styles and the remarkable ability of human drivers to safely and s
change lanes even in congested conditions are the topic of a forthcoming p
Acknowledgements
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