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Abstract

We generalize a wide class of time-continuous microscopic traffic models to include essential
aspects of driver behaviour not captured by these models. Specifically, we consider (i) finite
reaction times, (ii) estimation errors, (iii) looking several vehicles ahead (spatial anticipation),
and (iv) temporal anticipation. The estimation errors are modelled as stochastic Wiener
processes and lead to time-correlated fluctuations of the acceleration.

We show that the destabilizing effects of reaction times and estimation errors can essentially
be compensated for by spatial and temporal anticipation, that is, the combination of
stabilizing and destabilizing effects results in the same qualitative macroscopic dynamics as
that of the, respectively, underlying simple car-following model. In many cases, this justifies
the use of simplified, physics-oriented models with a few parameters only. Although the
qualitative dynamics is unchanged, multi-anticipation increase both spatial and temporal
scales of stop-and-go waves and other complex patterns of congested traffic in agreement with
real traffic data. Remarkably, the anticipation allows accident-free smooth driving in complex
traffic situations even if reaction times exceed typical time headways.
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1. Introduction

The nature of human driving behaviour and the differences with the automated
driving implemented in most micromodels is a controversial topic in traffic science
[1-8]. Finite reaction times and estimation capabilities impair the human driving
performance and stability compared to automated driving, sometimes called
‘adaptive cruise control’ (ACC). However, unlike machines, human drivers routinely
scan the traffic situation several vehicles ahead and anticipate future traffic situations
leading, in turn, to an increased stability.

The question arises, how this behaviour affects the overall driving behaviour and
performance, and whether the stabilizing effects (such as anticipation) or the
destabilizing effects (like reaction times and estimation errors) dominate, or if they
effectively cancel out each other. The answers to these questions are crucial for
determining the influence of a growing number of vehicles equipped with automated
acceleration control on the overall traffic flow. Up to now, there is not even clarity
about the sign of the effect. Some investigations predict a positive effect [9], while
others are more pessimistic [10].

Single aspects of human driving behaviour have been investigated in the past. For
example, it is well known that traffic instabilities increase with the reaction times 7"
of the drivers. Finite reaction times in time-continuous models are implemented by
evaluating the right-hand side of the equation for the acceleration (or velocity) at
some previous time ¢ — 77 with 7">0 [11-13]. Reaction times in time-continuous
models have been modelled as early as 1961 by Newell [11]. Recently, the optimal-
velocity model (OVM) [14] has been extended to include finite reaction times [12].
However, the Newell model has no dynamic velocity, and the OVM with delay turns
out to be accident-free only for unrealistically small reaction times [15].

To overcome this deficiency, Davis [13] has introduced (among other modifica-
tions) an anticipation of the expected future gap to the front vehicle allowing
accident-free driving at reaction times of 1s. However, reaction times were not fully
implemented in Ref. [13] since the own velocity, which is one of the stimuli on the
right-hand side of the acceleration equation, has been taken at the actual rather than
at the delayed time.

Another approach to model temporal anticipation consists in including the
acceleration of the preceding vehicles in the input variables of the model. For cellular
automata (CA), this has been implemented by introducing a binary-valued ‘brake
light’ variable [16].

To our knowledge, there exists no car-following model exhibiting platoon stability
(with respect to all stimuli) for reaction times exceeding half of the time headway of
the platoon vehicles. Human drivers, however, accomplish this task easily: In dense
(not yet congested) traffic, the most probable time headways on German freeways
are 0.9—1s[17,18] which is of the same order as typical reaction times [19]. However,
single-vehicle data for German freeways [17,18] indicate that some drivers drive at
headways as low as 0.3 s, which is below the reaction time of even a very attentive
driver by a factor of at least 2-3 [19]. For principal reasons, therefore, safe driving is
not possible in this case when considering only the immediate vehicle in front.
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This suggests that human drivers achieve additional stability and safety by taking
into account next-nearest neighbours and further vehicles ahead as well. Such
‘spatial anticipation’ or ‘multi-anticipation’ has been applied to the OVM [20] and
to the Gipps model [21] as well as to some CA model [16,22]. As expected, the
resulting models show a higher stability than the original model. However, the
stability of the aforementioned models is still smaller than that of human driving.
Furthermore, they display unrealistic behaviour such as clustering in pairs [21],
or too elevated propagation velocities of perturbations in congested traffic
(vy = =30km/h) [20].

Imperfect estimation capabilities often serve as motivation or justification to
introduce stochastic terms into micromodels such as the Gipps model [23] (see also
Ref. [2]). Most CA require fluctuating terms as well. In nearly all the cases,
fluctuations are assumed to be J-correlated in time and acting directly on the
accelerations. An important feature of human estimation errors, however, is a
certain persistency. If one underestimates, say, the distance at time ¢, the probability
of underestimating it at the next time step (which typically is less than 1s in the
future) is high as well. Another source leading to temporally correlated acceleration
noise lies in the concept of ‘action points’ modelling the tendency of human drivers
to actively adapt to the traffic situation, i.e., to change the acceleration only at
discrete times [24].

In this paper, we propose the human driver (meta-)model (HDM) in terms of four
extensions to basic physics-oriented traffic models incorporating into these models:
(i) finite reaction times, (ii) estimation errors, (iii) spatial anticipation, and
(iv) temporal anticipation. The class of suitable basic models is characterized
by continuous acceleration functions depending on the velocity, the gap,
and the relative velocity with respect to the preceding car and includes, for example,
the OVM [14], the Gipps model [23], the velocity-difference model [25],
the intelligent-driver model (IDM) [26], and the boundedly rational driver model
[27,28].

For matters of illustration, we will apply the HDM to the IDM [26], which has a
built-in anticipative and smooth braking strategy, and which reaches good scores
in a first independent attempt to benchmark micromodels based on real traffic
data [29].

In Section 2, we will formulate the HDM in terms of the acceleration function of
the basic model. In Section 3 we will simulate the stability of vehicle platoons as a
function of the reaction time 7’ and the number of anticipated vehicles n,. We find
string stability for arbitrarily long platoons for reaction times of up to 1.5s.
Furthermore, we simulate the macroscopic traffic dynamics for an open system
containing a flow-conserving bottleneck [26,30]. We find that multi-vehicle
anticipation (n,>1) can compensate for the destabilizing effects of reaction times
and estimation errors. The numerically determined phase diagram for the
corresponding parameter space gives the conditions under which simple physical
models describe the traffic dynamics correctly. In the concluding Section 4, we
suggest applications and further investigations and discuss some aspects of human
driving that are not included in the HDM.
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2. Modelling human driver behaviour

Let us formulate the HDM as a meta-model applicable to time-continuous
micromodels (car-following models) of the general form

do,
dt

where the own velocity v,, the net distance s,, and the velocity difference Av, to the
leading vehicle serve as stimuli determining the acceleration " [31]. This class of
basic models is characterized by: (i) instantancous reaction, (ii) reaction only to the
immediate predecessor, and (iii) infinitely exact estimating capabilities of drivers
regarding the input stimuli s, v, and Av, which also means that there are no
fluctuations. In some sense, such models describe driving behaviour similar to ACC
systems.

For the sake of simplicity, we will restrict ourselves to single-lane longitudinal
dynamics. Furthermore, we will not include adaptations of drivers to the traffic
conditions of the last few minutes. This so-called ‘memory effect’ is discussed
elsewhere [32].

= amic(sx, Uy, sz) s (1)

2.1. Finite reaction time

A reaction time 7" is implemented simply by evaluating the right-hand side of Eq.
(1) at time ¢t — T'. If T is not a multiple of the update time interval, we propose a
linear interpolation according to

x(t = T) = Ppximp1 + (1 = P)xien (@)

where x denotes any quantity on the right-hand side of (1) such as s,, v,, or Av,, and
x;—, denotes this quantity taken n time steps before the actual step. Here, n is the
integer part of 7’/At, and the weight factor of the linear interpolation is given by
= T'/At — n. We emphasize that «ll input stimuli s, v,, and Awv, are evaluated at
the delayed time.

Notice that the reaction time 7" is sometimes set equal to the ‘safety’ time-headway
T. It is, however, essential to distinguish between these times conceptually. While the
time headway T is a characteristic parameter of the driving style, the reaction time 7"
is essentially a physiological parameter and, consequently, at most weakly correlated
with T. We point out that both the time headway T and the reaction time 7" are to be
distinguished from the numerical update time step Az, which is sometimes erroneously
interpreted as a reaction time as well. For example, in our simulations, an update time
step of 2s has about the same effect as a reaction time of 1s while the results are
essentially identical for any update time step below 0.2 s.

2.2. Imperfect estimation capabilities

We will now model estimation errors for the net distance s and the velocity
difference Av to the preceding vehicle. Since the velocity itself can be obtained by
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looking at the speedometer, we neglect its estimation error. From empirical
investigations (for an overview see [2, p. 190] it is known that the uncertainty of the
estimation of Av is proportional to the distance, i.e., one can estimate the time-to
collision (TTC) s/|Av| with a constant uncertainty [33]. For the distance itself, we
specify the estimation error in a relative way by assuming a constant variation
coefficient V; of the errors. Furthermore, in contrast to other stochastic micromodels
[34], we take into account a finite persistence of estimation errors by modelling them
as a Wiener process [35]. This leads to the following nonlinear stochastic processes
for the distance and the velocity difference:

s(t) = (1) exp(Vywy(1)) , (©)

(Ao)*'(2) = Av(?) + s(2) rewan(?) @)

where V= a,/(s) with a2 = {(s — (s))?) is the variation coefficient of the distance
estimate, and 1/r,, a measure for the average estimation error of the time to
collision. The stochastic variables w(f) and wa,(¢f) obey independent Wiener
processes w(t) of variance 1 with correlation times 7 defined by [35]

dw w 2,
vy o )

(&) =0, (&0nid)=0t-1). (6)

In the explicit numerical update from time step ¢ to step ¢ + Az, we implemented
the Wiener processes by the approximations

[2At
WirAr = e‘A’/TW, + T”Iz ) (7

where the {#,} are independent realizations of a Gaussian distributed quantity with
zero mean and unit variance. We have checked numerically that the update scheme
(7) satisfies the fluctuation-dissipation theorem (w,z) = 1 for any update time interval
satisfying Ar<t.

Simulations have shown that, in agreement with expectation, traffic becomes more
unstable with increasing values of V and r.. To compare the influence of the
temporally correlated multiplicative HDM noise with more conventional white
acceleration noise, we have repeated the simulations of Section 3 with the
deterministic HDM (V = r. = 0) augmented by an additive noise term \/Q_af(t)
at the right-hand side of the acceleration equation. Remarkably, values of the
fluctuation strength @, can be found where the dynamics did not change essentially
with respect to the more realistic stochastic terms described by Vy, r., and 7. Thus,
the more detailed representation of stochasticity by the HDM can be used to relate
the conventional noise strength Q, (which does not have any intuitive meaning) to
better justified noise sources.

with
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2.3. Temporal anticipation

We will assume that drivers are aware of their finite reaction time and anticipate
the traffic situation accordingly. Besides anticipating the future distance [13], we will
anticipate the future velocity using a constant-acceleration heuristics. The combined
effects of a finite reaction time, estimation errors and temporal anticipation leads to
the following input variables for the underlying micromodel (1):

% =d""(s, v, Av)) 8)
with

() = 15" = T'Av", g, e

v, () = [v7" + T'as), (10)
and

AV = At — T (1)

We did not apply the constant-acceleration heuristics for the anticipation of the
future velocity difference or the future distance, as the accelerations of other vehicles
cannot be estimated reliably by human drivers. Instead, we have applied the simpler
constant-velocity heuristics for these cases.

Notice that the anticipation terms discussed in this subsection (which do not
contain any additional model parameters) are specifically designed to compensate
for the reaction time by means of plausible heuristics. They are to be distinguished
from ‘anticipation’ terms in some models aiming at collision-free driving in ‘worst-
case’ scenarios (sudden braking of the preceding vehicle to a standstill) when the
braking deceleration is limited. Such terms typically depend on the velocity
difference and are included, e.g., in the Gipps model, in the IDM, and in some
CA [22,36], but notably not in the OVM. The HDM is most effective when using a
basic model with this kind of anticipation.

2.4. Spatial anticipation for several vehicles ahead

Let us now split up the acceleration of the underlying microscopic model into a
single-vehicle acceleration on a nearly empty road depending on the considered
vehicle o only, and a braking deceleration taking into account the vehicle—vehicle
interaction with the preceding vehicle:

amic(sow Uots AUO():Zagee + amt(saa U%a AU%) N (1 2)

Notice that this decomposition of the acceleration has already been used to
formulate a lane-changing model for a wide class of micromodels [37].

Next, we model the reaction to several vehicles ahead just by summing up the
corresponding vehicle—vehicle pair interactions a;”é from vehicle f to vehicle « for the
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n, nearest preceding vehicles f:

d ree & in
G =d<+ > di. (13)

p=0—n,

where all distances, velocities and velocity differences on the right-hand side are given
by (9)—(11). Each pair interaction between vehicle o and vehicle f is specified by

aé(n[; = aint(sa/)'a UO!) UO! - Uﬂ) > (14)
where
o
Syp = Z 8 (15)
=B+

is the sum of all net gaps between the vehicles o and f.

2.5. Applying the HDM extensions to the intelligent driver model (IDM)

In this paper, we will apply the HDM extensions to the IDM. In this model [26],
the acceleration of each vehicle o is assumed to be a continuous function of the
velocity v,, the net distance gap s,, and the velocity difference (approaching rate) Av,
to the leading vehicle:

4 N 2
N :all B (v> B (S@Av)) ] | (16)
[ Sy

The IDM acceleration consists of a free acceleration @ = a[l — (v/vo)4] for
approaching the desired velocity vy with an acceleration slightly below a, and the
braking interaction a™ = —a(s* /s)z, where the actual gap s, is compared with the
‘desired minimum gap’

VAV
2+/ab

which is specified by the sum of the minimum distance sy, the velocity-dependent
safety distance vT corresponding to the time headway 7, and a dynamic part. The
dynamic part implements an accident-free ‘intelligent’ braking strategy that, in nearly
all situations, limits braking decelerations to the ‘comfortable deceleration’ b. Notice
that all IDM parameters have an intuitive meaning. By an appropriate scaling of space
and time, the number of parameters can be reduced from five to three.

s (v, Av) = so + vT + (17)

2.5.1. Renormalization for the IDM
Remarkably, there exists a closed-form solution of the multi-anticipative IDM
equilibrium distance as a function of the velocity,

1/2

o]~
Mm:ﬁmmk-(ﬂ} , (18)
Vo
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which is y times the equilibrium distance of the original IDM [26], where

Ny 1

y = ;E (19)

The equilibrium distance s.(v) can be transformed to that of the original IDM by
renormalizing the relevant IDM parameters appearing in s*(v, 0):

S{)en — S_O, Tren — Z ) (20)
Y Y
The above renormalization will be applied to all simulations of this paper. Notice
that, in the limiting case of anticipation to arbitrarily many vehicles we obtain
limy, — 00 (1) = 7/ V6 = 1.283. This means that the combined effects of all non-
nearest-neighbour interactions would lead to an increase in the equilibrium distance
by just about 28%.

2.6. Summary of the human driver model (HDM )

The HDM is formulated in terms of a meta-model introducing reaction times,
finite estimation capabilities, temporal anticipation and multi-vehicle anticipation to
a wide class of simple micromodels. The model has two deterministic parameters,
namely the reaction time 7’ and the number n, of anticipated vehicles whose
influences will be investigated below.

The only stochastic contributions come from modeling finite estimation
capabilities. The stochastic sources V and r. characterize the degree of the
estimation uncertainty of the drivers, while t denotes the correlation time of errors.
The limit T — 0 corresponds to multiplicative white acceleration noise while T — oo
corresponds to ‘frozen’ error amplitudes, i.e., de facto heterogeneous traffic. All
human-driver extensions are switched off and the original basic model is recovered if
T'=0,n,=1,and Vy=r.=0.

The HDM-IDM combination (i.e., the application of the HDM to the IDM) has a
total number of ten parameters which can be reduced to eight by an appropriate
scaling of space and time. Replacing the HDM noise by white additive noise
(cf. Section 2.2) allows a further reduction to six parameters while retaining all
essential properties.

3. Simulations and results

In this section, we apply the HDM extensions to the IDM for matters of
illustration. In all simulations, we have used an explicit integration scheme assuming
constant accelerations between each update time interval At according to

va(1 + AD) = v,(1) + ax(AL,

Xt + AD) = x, (1) + v, (DAL + L, (A1) . 1)
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Table 1
Parameters of the human-driver extensions with the values used in this paper

Parameter Value

Reaction time 77 0-2.0s

Number of anticipated vehicles, n, 1-7

Relative distance error, V 5%

Inverse TTC error, r. 0.01/s

Error correlation time, t 20s

Unless stated otherwise, we have used the IDM parameters vy = 128km/h, 7= 1.1s, a= lm/sz,

b=1.5m/s?, and s, = 2m. In Section 3.1, we have changed vy and T to 115km/h and 1.5s, respectively.

Unless stated otherwise, we will use the IDM and HDM parameters given in
Table 1. In the simulations, we will mainly study the influences of the reaction time
T’ and the number n, of anticipated vehicles.

3.1. String stability of a platoon

We have investigated the stability of the HDM as a function of the reaction time
T’ and the number n, of anticipated vehicles by simulating a platoon of 100 vehicles
following an externally controlled lead vehicle. As in a similar study for the OVM
[15,13], the lead vehicle drives at vj,y = 15.34m/s for the first 100s before it
decelerates with —0.7m/s> to 14.0m/s and continues with this velocity until the
simulation ends at 2500s.

For the platoon vehicles, we use the IDM parameters vp = 32m/sand T = 1.5s to
obtain the same desired velocity and initial equilibrium gap (s, = 25.7m) as in
previous studies [15,13]. The other IDM parameters are ¢ = I m/s?, b = 1.5m/s?,
and 5o = 2m. If n, is larger than the number of preceding vehicles (which can happen
for the first vehicles of the platoon) then n, is reduced accordingly. Fluctuations have
been neglected in this scenario. As initial conditions, we have assumed the platoon to
be in equilibrium, i.e., the initial velocities of all platoon vehicles were equal to vy
and the gaps equal to s, so that the initial HDM (and IDM) accelerations were equal
to zero.

We distinguish three stability regimes: (i) String stability, i.e., all perturbations
introduced by the deceleration of the lead vehicles are damped away, (ii) an
oscillatory regime, where perturbations increase but do not lead to crashes, and (iii)
an instability with accidents. The condition for a simulation to be in the crash regime
(ii1) is fulfilled if there is some time ¢ and some vehicle o so that s,(f)<0. The
condition for string stability is fulfilled if |o,(£)] <2m/s? at all times (including the
period where the leading vehicle decelerates) and for all vehicles, and additionally
|6,(£)] <0.01m/s?> for all vehicles towards the end of the simulation. Finally, if
neither the conditions for the crash regime nor that for the stable regime are fulfilled,
the simulation result is attributed to the oscillatory regime.

Fig. 1 shows the three stability regimes as a function of the reaction time 7" and
the platoon size n for spatial anticipations of n, = 1 and 5 vehicles, respectively. For
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Fig. 1. Stability of a platoon of identical vehicles as a function of the platoon size and the reaction time 7"
for the situation described in Section 3.1 (a) assuming conventional follow-the-leader behaviour (1, = 1)
and (b) a reaction to n, = 5 vehicles. The simulation is for a time headway of 7" = 1.5, a numerical update
time interval of Az = 0.1s, and a desired velocity vy = 32m/s. The other parameters are given in Table 1.
In the ‘stable’ phase, all perturbations are damped away. In the oscillatory regime, the perturbations
increase, but do not lead to crashes.

n, =1 (corresponding to conventional car-following models without spatial
anticipation), a platoon of 100 vehicles is stable for reaction times of up to
T, = 0.8s. Test runs with larger platoon sizes (up to 1000 vehicles) did not result in
different thresholds suggesting that stability for a platoon size of 100 essentially
means stability for arbitrarily large platoon sizes.

Increasing the spatial anticipation to n, = 5 vehicles shifted the threshold of the
delay time 7" for string stability of a platoon of 100 vehicles to 7, = 1.3s.
Increasing the delay time T’ beyond the stability threshold led to strong oscillations
of the platoon. Crashes, however, occurred only when 7’ exceeded a second
threshold 7',. Remarkably, for n, =5 or more vehicles, the observed threshold
T, =18s is larger than the equilibrium time headway s,/vj. = 1.68s. More
detailed investigations reveal that crashes are triggered either directly by late
reactions to deceleration maneuvers or indirectly as a consequence of the string
instability. Further increasing n, do not change the thresholds significantly.

3.2. Open system with a bottleneck

In this section, we examine the opposite influences of the driver reaction time 7’
and the spatial anticipation n, on the stability of traffic and the occurring traffic
states in a more complex and realistic situation.

We have simulated a single-lane road section of total length 20km with a
bottleneck and open boundaries assuming identical drivers and vehicles of length
[ = 5m, whose parameters are given in Table 1. The update time interval of the
numerical integration was Af = 0.1s. Each simulation run covered a time interval of
3 h. We initialized the simulations with very light traffic of density 1 vehicle/km and
set all initial velocities to 100 km/h.

We have simulated idealized rush-hour conditions by increasing the inflow Q,,(¢)
at the upstream boundary linearly from 100 veh/h at = 0—2100veh/h at r = 1 h,
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keeping the traffic demand constant afterwards. Since this demand exceeds the static
road capacity Qg ~ 2000 veh/h at the bottleneck (the maximum of the fundamental
diagram), a traffic breakdown is always provoked, irrespective of the stability of
traffic. We have implemented a flow-conserving bottleneck at 18 km<x<20km
by linearly increasing the IDM parameter 7 from 1.1 to 1.65s in the region
18.0km<x<18.5km, setting 7 =1.65s for 18.5km<x<19.5km, and linearly
decreasing 7 from 1.65 to 1.1s in the region 19.5km <x<20.0 km (see Ref. [4] for a
justification of this treatment of flow-conserving bottlenecks).

In order to determine the spatiotemporal dynamics, we plot, at any given
spatiotemporal point (x, ), the locally averaged velocity of the vehicle trajectories
nearby. The averaging filter [38] had half-widths of 1 min and 0.4 km, respectively.

We have simulated the open system with n, = 1 to 7. For each value of n,, we have
varied the reaction time in steps of 0.05s. Fig. 3 shows typical examples of the
spatiotemporal patterns occurring in the simulations. By associating qualitatively
different simulation results with different dynamical phases, we obtained a phase
diagram in the space spanned by n, and T’ (see Fig. 2). The different states were
determined using smoothed velocity data, as shown in Fig. 3.

Specifically, a congested state may be either localized (localized cluster (LC)) or
extended (extended congested traffic (ECT)). The criterion to discriminate between
these two types of congested traffic is the width of the congested region which, for
LCs, is constant (and typically less than 1km), while the width of ECT is variable
and depend in particular on the inflow. The transition between LC and ECT is
slightly hysteretic. Furthermore, there are transitions from both LC and ECT to free
traffic (FT) which are hysteretic as well.

Within ECT, there exist three dynamical phases separated by continuous phase
transitions. As order parameter to distinguish between HCT (cf. Fig. 3(b)) and
oscillating congested traffic (OCT, cf. Figs. 3(a) and 4(c)) we have used the variance 6
of the temporal velocity variations in the congested region sufficiently upstream of
the bottleneck, where it is essentially constant with respect to space and time. While,
in the case of HCT, 6 depends mainly on the fluctuating forces and remains below
1(m/s)?, it jumps to more than 100 (m/s)* and essentially becomes independent of
the fluctuation strength in the case of OCT. The third dynamical ECT phase are TSG
waves (cf. Figs. 3(c) and 4(b)). In contrast to OCT, TSG states reach the free branch
of the fundamental diagram, i.c., there are uncongested areas between the congested
ones. Nevertheless, the OCT and TSG states are hard to distinguish as they are not
separated by a hysteretic phase transition.

Within localized clusters, we have observed a sharp transition between LCs
moving upstream at a constant velocity of about v, = —15km/h (MLC), and
clusters fixed at the bottleneck (PLC). In contrast to the IDM, we observed a
coexistence of both localized dynamical phases (Fig. 3(d)), as required by
observations [39].

Let us point out that our system is markedly different from the open system
proposed by Kolomeisky et al. [40] where all phases are triggered by boundaries
rather than by a bottleneck and which essentially contains only FT and the HCT
state. Specifically, one can associate the ‘high-density’ state of Ref. [40] with HCT,
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Fig. 2. Phase diagram of congested traffic states in the phase space spanned by the number n, of
anticipated vehicles and the reaction time 7" in the open system with a bottleneck as described in the text.
The dynamic phases homogeneous congested traffic (HCT), oscillatory congested traffic (OCT), triggered
stop-and-go (TSG), and moving and pinned localized clusters (MLC/PLC) are discussed in the main text.
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= =
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Fig. 3. Spatiotemporal dynamics of typical traffic states of the phase diagram of Fig. 2: (a) the special case
of the IDM (n, = 1, T' = 05) leads to oscillatory congested traffic (OCT); (b) n, = 5 anticipated vehicles
and a reaction time 77 = 0.9s leads to homogeneous congestion (HCT); even larger reaction times lead to
(¢) TSG (n, =5, T' = 1.1s) or (d) a combination of MLC and PLC (n, = 6, T' = 1.2s). All data are
smoothed with half-widths of 1 min and 0.4 km, respectively.
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Fig. 4. Spatiotemporal dynamics of congested traffic on the German freeway A9 South near Munich: (a)
sketch of the freeway; (b) stop-and-go traffic (TSG) caused by the intersection I1 (cf. Fig. 3c); and (c) OCT
caused by the intersection 12 (cf. Fig. 3a). The spatiotemporal data were obtained from 1 min data at the
detector positions indicated in (a), using the adaptive smoothing method (ASM) [38] with smoothing half-
widths of 1 min and 0.4 km, respectively.

while the ‘maximal-current’ state corresponds to the outflow region from HCT and
finally the ‘low-density’ state corresponds to FT.

All of the above dynamic phases can be either obtained by varying the inflow and
the bottleneck capacity [41,42,26], or by varying the model parameters, which we do
in the following. The left lower corner of Fig. 2 corresponds to the special case of the
IDM, i.e., to the case of zero reaction time (7’ = 0) and consideration of the
immediate front vehicle only (1, = 1). In this case, the simulation results in OCT for
the boundary conditions specified before (see Figs. 3(a) and 5(a)).

Varying n, and T leads to the following main results:

(1) Traffic stability increases drastically, when the spatial anticipation is increased
from n, = 1 to 6, while the stability remains essentially unchanged for n,> 6.
(i1) For a sufficiently large number of anticipated vehicles, the congestion pattern
becomes stable corresponding to HCT as shown in Fig. 3(b). Thus, different
traffic states can be produced not only by varying the bottleneck strength as in
the phase diagram proposed in Ref. [41], but also by varying model parameters
that influence stability.
(iii) Increasing the reaction time 7" destabilizes traffic and finally leads to crashes.
(iv) The other dynamic congested traffic states of the phase diagram presented in
Ref. [41] are found as well, specifically, triggered stop-and-go waves (TSG) (cf.
Fig. 3(c)). In addition, we found a coexistence of MLC and PLC (see Fig. 3(d)).



84 M. Treiber et al. | Physica A 360 (2006) 71-88

160 160
140 140
120 120
= [y A = [ n
£ '% Vv (N £ NAWAVARVAY
£ % WU S & TRV TV
> % POy > % 1 T
a0 f CU 00 Py \/
060 80 100 120 140 160 180 O60 80 100 120 140 160 180
(a) t (min) (b) t (min)

Fig. 5. Velocity time series by a virtual detector at x = 14km for (a) n, =1, T" = 0s, and (b) n, = 5,
T' = 1.1s. Notice the increase of the oscillation wavelength in the scenario (b) with anticipation.

(v) The results are robust against variations of the stochastic HDM parameters or
when the correlated noise is replaced by white acceleration noise.

We have compared the spatiotemporal dynamics with traffic data from the
German freeway A9 South near Munich. For this freeway, aggregated detector data
(vehicle counts and average velocities for 1 min intervals) are available for each lane
at the locations indicated in Fig. 4(a). The plots (b) and (c) of Fig. 4 show the
spatiotemporal dynamics of the local velocity for TSG and OCT, respectively. In
both cases, these states were caused by intersections acting as bottlenecks.

To obtain the spatiotemporal dynamics shown in these plots, we have applied the
ASM [38] to the lane-averages of the velocity data. The smoothing times and lengths
of the ASM are set to the values used for the averaging filter in the simulation, i.e.,
to 1min and 0.4km, respectively. The other ASM parameters were set to
ve1 = 30km/h, v, = 60km/h, cp.. = 80km/h, and ceony = —15km/h [38]. We have
checked that the result was essentially unchanged when changing any of the first
three parameters by factors between 0.7 and 1.5. In contrast, changes of the last
parameter ccn, representing the propagation velocity of collective structures in
congested traffic influence the result. Artificial shifts of the congested structures are
observed if ¢, is outside a range of about [—17, —14km/h]. This means, besides
making spatiotemporal plots, the ASM can be used to determine the propagation
velocity Ceong-

By comparing the simulation results Fig. 3(a) and (c) with the traffic data shown in
Fig. 4(c) and (b), respectively, one sees a qualitative agreement of the spatiotemporal
dynamics in many respects. Particularly,

(1) the congestion pattern is triggered by a bottleneck,

(i1) the downstream front of the congestion pattern is stationary and located at the
position of the bottleneck,

(iii) traffic is essentially non-oscillatory in a region of about 1km width near the
bottleneck (this is sometimes called the ‘pinch region’ [43]),

(iv) further upstream, the congested traffic consists of stop-and-go waves propagat-
ing upstream at a constant velocity ccong,

(v) the period 7 of the oscillations is variable.
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Isolated and coexisting MLCs and PLCs as in Fig. 3(d) have been observed in
traffic data as well [39]. Particularly, PLC and MLC states are shown in Figs. 6 and
10 of Ref. [39]. HCT states and even combined states of one or more PLCs with one
or more isolated MLCs were also observed in Ref. [39].

In addition to these qualitative aspects, there exists a nearly quantitative
agreement with respect to (i) the propagation velocity cqmg = —15km/h, and
(i1) the range of the oscillation periods t between 6 and 40 min (notice that many car-
following models yield too short periods). The latter point is illustrated by
comparing Fig. 3(a) (no reaction time and no anticipation) and Fig. 3(c) (finite
reaction time and anticipation) with the data (Fig. 4).

In summary, we have shown that the destabilizing effects of finite reaction times
can be compensated to a large extent by spatial and temporal anticipation such that
the resulting stability and dynamics are similar to the case of the IDM with zero
anticipation and reaction time. However, besides stability issues, the HDM
simulation results agree better with empirical traffic data in the following aspects:
(1) Compared to the underlying IDM, the HDM simulation shows larger oscillation
periods in the case of OCT and, generally, lower velocity gradients. (ii) Coexisting
PLCs and MLCs are observed both in the HDM and in real traffic data [39], but not
in the IDM. (iii) Near the bottleneck, the HDM regularly produces traffic of
relatively high flow and density (‘pinch region’).

4. Discussion

Finite reaction times and errors in estimating the input variables are clearly
essential factors of driver behaviour affecting the performance and stability of
vehicular traffic. However, these aspects are rarely considered in physics-oriented
traffic modelling. Nevertheless, the simple models used by physicists such as the
OVM and its generalizations [14,13], the velocity-difference model [25], or the IDM
allow to describe many, particularly macroscopic, aspects of traffic dynamics such as
the spatiotemporal dynamics of the various types of traffic congestion, the
propagation of stop-and-go traffic, or even the scattering of flow-density data
points of ‘synchronized traffic’ [4].

The question arises why, despite their obvious shortcomings, these models work so
well. This question became more pressing after it turned out that all of the above
models (including the IDM) produce unrealistic dynamics and crashes when
simulating these models with realistic reaction times (of the order of 1s).

In this work, we have shown that the destabilizing effects of reaction times
and estimation errors can be compensated for by spatial and temporal anticipations:
One obtains essentially the same longitudinal dynamics, which explains the good
performance of the underlying simple models. In order to put this balance of
stabilizing and destabilizing effects into a more general context, we have formulated
the human-driver model (HDM) as a meta-model that can be used to extend a wide
class of car-following models, where the acceleration depends only on the positions,
velocities and accelerations of the own and the preceding vehicle. By applying
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the HDM extensions to the IDM, we have provided quantitative details of the
balance conditions and the remaining differences in the dynamics. This involves
validity criteria for the applicability of simpler physics-oriented car-following
models.

Since the basic models have both the advantages and limitations of ACC systems,
one can investigate the impact of ACC vehicles on the capacity and stability of the
overall traffic simply by simulating a mixture of, e¢.g., IDM and HDM vehicles.
Furthermore, one gets the nontrivial result that hypothetical future traffic consisting
predominantly of automated vehicles will exhibit macroscopic dynamics similar to
that of the actual traffic, although the driving strategy would be markedly different.

While finite reaction times have been investigated for more than 40 years [1] the
HDM-IDM combination is, to our knowledge, the first car-following model
allowing accident-free driving at realistic accelerations in all traffic situations for
reaction times of the order of and even exceeding the time headway. A closer look at
quantitative features of stop-and-go traffic or oscillations shows that, compared to
simulations of the original IDM, the HDM extensions reduce the gradients
of transitions between free and congested traffic and increase the wavelengths of
stop-and-go waves, in agreement with empirical data. This suggests that multi-
anticipation is an essential aspect of the driver behaviour.

A comparison of the stochastic HDM expressions for imperfect estimation
capabilities with other stochastic micromodels is in order. While fluctuating terms
were first introduced to traffic models more than 20 years ago [23], the most
prominent example of stochastic traffic models are CA of the Nagel-Schreckenberg
type [34] and extensions thereof. There is, however, a qualitative difference
compared with most continuous models: Fluctuation terms change the qualitative
dynamics of many CA models. Therefore, they must be carefully chosen to yield
plausible results. In contrast, the qualitative dynamics typically remains the same
when fluctuations are added to car-following models via the HDM extensions.
Having modelled the estimation errors by a stochastic Wiener process with a finite
correlation time, we have included the persistence of estimation errors for a certain
time interval.

The phase diagram shown in Fig. 2 contained qualitatively the same
spatiotemporal congested states as found in Refs. [41,26]. At first sight, this seems
surprising. Besides using a different model, the control parameters making up the
phase space were extrinsic in the previous work, while the phase space is spanned by
intrinsic model parameters in the present work. A closer look at the analytic
expressions for the phase boundaries [41] containing both extrinsic flow parameters
and intrinsic stability limits indicates that variations of both kinds of control
parameters can lead to phase transitions.

From a control-theoretical point of view, the HDM extensions implement a
continuous response to delayed and noisy input stimuli. Alternatively, human
driving behaviour can be modelled by so-called action-point models, where the
response changes discontinuously whenever certain boundaries in the space spanned
by the input stimuli are crossed [44,24,21], but these thresholds cannot be easily
confirmed by empirical data.
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Finally, it should be mentioned that, in this work, we have considered only
longitudinal aspects of human driving (acceleration and deceleration) and
implemented only identical driver—vehicle units. Platooning effects due to different
driving styles and the remarkable ability of human drivers to safely and smoothly
change lanes even in congested conditions are the topic of a forthcoming paper.
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