Modeling Driver Behavior as
Sequential Risk-Taking Task
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Acceleration modelsareat thecor e of operational driving behaviorsand
include car-following models that capture interactions between a lead
and following vehicles. The main assumption in these modelsisthat the
behavior of thefollowing vehicle (e.g., changein acceleration) isrelated
directly toastimulusobserved or perceived by thedriver, defined relative
tothelead vehicle (e.g., differencein speedsor headways). An important
aspect missing from previous formulations pertains to the stochastic
character of thecognitive processesused by drivers, such asperception,
judgment, and execution whiledriving. A car -following model that r eflects
the psychological and cognitive aspectsof the phenomenon and captures
risk-taking behavior under uncertainty isexplored and evaluated. In
thismodel, Tversky and Kahneman'’s prospect theory provides a theo-
retical and operational basisfor weighingadriver’ sdifferent alternatives.
The model isimplemented and tested to assessits properties and those
of theresulting traffic stream behavior.

Acceleration modelsare at the core of operational driving behaviors
and include car-following models that capture interactions between
alead and following vehicles. The main assumption in these models
is that the behavior of the following vehicle (e.g., change in accel-
eration) isdirectly related to astimulus observed or perceived by the
driver, defined relative to thelead vehicle (e.g., differencein speeds
or headways). Thisideawas adopted in the car-following model s of
Chandler et a. (1), Gaziset a. (2), and Herman et al. (3), known as
the General Motor (GM) models. Thesefirst modelsare not complete
in the sense that they are applicable to al traffic situations. Later
investigations proposed improved models by introducing a safe
time headway and adesired velocity. The Gipps model (4) and the
intelligent-driver model (IDM) (5) contain intuitive parameters that
can be related to the driving style, such as desired accelerations,
comfortable decel erations, and adesired safe time gap. Furthermore,
they include braking strategies that prevent accidents under agiven
heuristic. Subsequent studies have extended these models by intro-
ducing additional parameters intended to capture dimensions such
as anticipation, learning, and response to several vehicles ahead.
The Wiedemann model capturesthe indifference of driversto small
changesin stimuli. It al so allows different execution modes, including
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emergency braking (6). Asthese models continueto evolveand gain
in behavioral realism, agreater range of cognitive phenomenacould
beincorporated. Animportant aspect missing from previousformu-
lations pertains to the modeling of the cognitive processes used by
drivers, such as perception, judgment, and execution while driving.
Previous studies that recognized these dimensions remained in a
qualitative framework, with limited mathematical specificity and
hence no calibration effort.

A wide spectrum of car-following and lane-changing models
has been presented in the literature and in some cases incorporated
in traffic simulation tools. Existing models aim to capture driver
behaviors under avariety of traffic conditions that range from free-
flow conditionsto extreme situations. However, few modelscan claim
to fully capture driver behavior in these different driving environ-
ments, especially in phasetransitions, traffic breakdowns, and incident
occurrences. These conditions call for aricher representation of the
cognitive processes underlying driver behavior. In particular, explicit
representation of drivers’ risk attitudesis expected to provide greater
insight into the role of risk-taking behaviors in accident-prone and
other extreme situations.

This paper explores and evaluates a car-following model that
reflects the psychological and cognitive aspects of the phenomenon
and captures risk-taking behavior under uncertainty. In this model,
Kahneman and Tversky’ s prospect theory providesatheoretical and
operational basis with which to weigh adriver’s alternatives (7).

BACKGROUND REVIEW

Major developmentsin human decision-making research offer asolid
base for many modelsin the domains of psychology, marketing, and
economics. However, the influence of these theories on modeling
traffic and driver behavior has been limited. This may be because of
theinitial normativeintent of early decision theories, that is, to help
decision makersreach better decisionsrather than seeking to describe
the often suboptimal waysin which people actually make decisions
in everyday situations. Following the pioneering theoretica contri-
butions of Bernoulli to classical utility theory (8), Von Neumann
and Morgenstern introduced arigorous axiomatiation (VNM’ saxioms)
that provided the formal basis for expected utility theory (9). The
latter lies at the core of modern decision theory, the primary technical
approach for operational decision aiding under risk. Inconsistencies
between choices actually made by humans and those predicted by
thetheoriesled to recognition of the limitations of strict utility theory
for describing many practical decision situations (10, 7). Refinements
of utility theories, including subjective variants and prospect theory,
advanced by Kahneman and Tversky as a descriptive model of how
humans make decisions under risk, have been proposed. Attemptsto
identify and formalize these cognitive and decision processes have
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resulted in theidentification of alarge range of heuristics and biases
that appear to be prevalent in human decision making.

Prospect Theory

Prospect theory postulates two phases while making decisionsin
complex situations: a framing and editing phase followed by an
evaluation phase (7). Thefirst phaseisapreliminary analysis of the
decision problem to subjectively frame the effective alternatives.
The decision maker may mentally edit the alternatives, resulting in
assigning subjective utilitiesto the outcomes, which reflect asymme-
tries between attitudes toward losses versus gains. Figure 1a shows
atypical subjective utility function used in prospect theory.

The evaluation phase produces a prospect index calculated in a
similar manner to an expected utility, albeit with the major difference
that the probabilities of the different possible outcomesarereplaced by
subjective decision weights assumed by decision makers (Figure 1b).
Theweighting function is characterized by overweighing probability
differences near certainty and impossibility, relative to comparable
differencesinthe middle of the scale (overestimation during extreme
situations) (11). At the end, the alternative with the highest prospect
(not expectation) is selected. In general, the probability weighing
function corresponds to an inverse S-shaped function with steep
gradients near the beginning and near the end of the curve. However,
in Figure 1b, these steep gradients are replaced by discontinuities or
probability jumps near 0 and 1. Thiskind of curveis favorable for
lotteries and insurance companies. These companies are considered
as utility distribution transformers, either by accumulating a given
amount of utility to an extremely rare event (lottery) or by redistrib-
uting an extremely rare big disutility to asmall but certain disutility
(the insurance payment).

Heuristics and Information Processing
In decision theory, heuristics are simplified models of the world or

shortcutsthat can produce decisions efficiently. Because of humans'
limited information processing abilities, heuristics were considered
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asastrategy to adapt to acomplex environment. In seminal works,
Tversky and Kahneman pointed to the prevalence of heuristicsin
everyday decisions and grouped heuristic rulesinto three main cate-
gories, identifying common biases associated with each category, as
follows (12):

e Representativeness. In estimating the probability that Object A
ispart of B, thedegreetowhich A isrepresentative of B or thedegree
towhich A resembles B affectsthe assessment. The biases resulting
from this heuristic include

—Insensitivity to prior probability of outcomes or base-rate
frequency of the outcomes,

— Insensitivity to sample size,

— Misconception of chance,

— Insensitivity to predictability,

—Illusion of vaidity, and

— Misconception of regression (to the mean).

e Availability. Thisjudgment heuristicis represented by the ten-
dency of people to assess the probability of occurrence of an event
by the “ ease with which instances or occurrences can be brought to
mind” (13). The biases associated with this heuristic are caused by
the following:

— Retrievahility of instances (familiarity),

— Effectiveness of a search set where different tasks will give
different search sets,

— Imaginability, and

—Illusion of correlation.

e Adjustment and anchoring. In estimating probabilities (values
in general), different starting points will lead to different estimates,
biased toward the initial estimates. This is called anchoring. The
associated biases are

— Insufficient adjustment,

— In evaluation of conjunctive and digjunctive events, and

— Anchoring in the assessment of subjective probability distri-
butions.

Accordingly, these heuristics have hel ped explain the so-called fal-

lacies contrasting human judgment with probability theory. However,
they do not individually or collectively define acomprehensive theory

1.0 -

DECISION WEIGHT: = (p)

STATED PROBABILITY: p
(b)

FIGURE 1 Typical functions in prospect theory: (a) value function and (b) weighing function (71).
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of decision making, nor do they provide a sufficient basisfor for-
mulating decision mechanisms for a variety of general decision
situations (14).

Inthemode of driver behavior formulated in the next section, the
prevalence of such heuristics is reflected implicitly, with the main
focus on explicitly incorporating prospect theoretic conceptsin the
model formulation. Thisallowsacomprehensiveinclusion of major
characteristics found in the human decision-making research to the
field of traffic modeling. Such characteristics contain (a) stochastic
behavior under uncertain conditions and (b) disrespect of saferational
rulesin the form of risk taking.

CAR-FOLLOWING MODEL FORMULATION

In the car-following process, three behaviors are possible:

1. Driversaccelerate,
2. Driversdecelerate, and
3. Driverskeep the same speed.

It is assumed that time is divided into different acceleration
instancesi=1,2, . . .. car-following model formulationiscurrently
defined by the reaction time where a driver considers accelerating,
decelerating, or keeping the same speed. The main variable of interest
isthe subjective probability of being involved in arear-end collision
with the car in front.

The main assumptions are as follows:

1. Decisionmakersbelievethai—at al instances—they will follow
the same stochastic process. given an assumed distribution of the
future velocity of the leader, adriver will have aprobability density
function of the acceleration he or she will adopt.

2. The subjective probabilities are updated optimally to increase
thevelocity (up to agiven desired value)—thus decreasing the travel
time—while taking into consideration the risk of being involved in
acollision.

Following the logic in an earlier work (15), the n’s decision
maker’s representation of the probability of being involved in a
rear-end collision in the acceleration instance i is denoted by p,;.
Thisrepresentation is not equal to the objective collision probability
O, that isnot known at this stage. In other words, p,; representsthe
decision maker’s representation of the task and depends on his or
her prior distribution of p,; and how he or she updates that prior
distribution with experience (driving history). On the other hand,
O, represents how the environment behaves and is structured for the
car-following task. Linking py,; to the surrounding driving conditions
isacurrent object of investigation.

Four possible submodels can be considered in this framework:

1. Nonstationary submodel with decreasing probability. In this
model, p,; decreases asi increases, that is, the longer one follows a
car, thelesslikely oneisto beinvolved in arear-end collision. This
model is not adopted here because it does not consider possible
driver fatigue.

2. Stationary submodel: p,; remainsconstant wheni increases. This
model lacks consideration of thedriving process and theinconsistency
of drivers and therefore is not considered further.

3. Nonstationary submodel with increasing probability: thereare
infinitely many possibilitiesin which p,; might increasewithi. How-
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ever, thedriver’s perception of being involvedin arear-end collision
is unlikely to be monotonically increasing since it depends on the
acceleration state of the leading drivers. This volatility is the main
reason the next submodel isintroduced.

4. Nonstationary submodel with mixed-behavior probability:
thereis alarge number of mechanisms in which p,; might increase
or decrease with i.

Submodel 4 isthe one considered in this paper. A prior probability
of collision isassumed to be held by the driver (p,,). This probability
isupdated while conditioned on the behavior (accel eration, deceler-
ation, etc.) of the leader and the follower. This probability is also
conditioned on the fact that adriver isnot involved in acrash in the
previous accel eration instance. Note that the behavior of theleading
driver is not known at the beginning (type of the driver assumed
at beginning, liken), and it isassumed that it is related to the driver
population in which agiven study is being conducted. The term p,;
isformulated in the following.

Estimation of Collision Probability

Assumethat at timet the subjective representation of driver nfor the
future speeds of the leader n — 1 (Figure 2) during the anticipated
time span t, follows a normal distribution with a given standard
deviation 6(v,,_;), and the mean is given by the actual velocity of the
leader. This means that the estimated velocity v&(t) of the leader
has a probability density f(v\ t) given by

()= ——— ap[_(v_v“(t))z} (1)

2n6(v,,) 26(v,,)°

For the leading vehicle, a constant velocity heuristic is adopted,
that is, itsvelocity distribution given by Equation 1 isassumed to be
valid during the entire anticipated timeinterval betweentandt + t,.

The driver under consideration (i.e., the follower) estimates the
probability of arear-end collision at the end of the anticipation
time horizon t + 7, for candidate accelerations a, in arrange a., to
amin. See Table 1, where the parameters above the line are actual
model parameters, and those below the line are secondary parameters
needed only for numerical implementation. Since the driver isin
control of hisor her accel eration, aconstant accel eration heuristicis
assumed for determining the crash probability: once chosen, the
acceleration a, will not be changed during the anticipation time
horizon. The crash probability p,(t + t,) is given by the probability
that the gap (S,(t) = Xn-1(t) — Xy(t) — Li-1) isnegative at timet + 1, that
is, Pa(t + 1) = P(si(t + 1) < 0).

Ax— L,
Follower n Leader n-1
<
1 1
Ln Ln-1

Xn Xp -1
Xn Xn-1
Xn Xn-1

FIGURE 2 Representation of vehicles in standard
car-following model.
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TABLE 1 Parameters and Typical Values of Model
Parameter Typica Vaue
Maximum anticipation time horizon Toax=D5S
Velocity uncertainty variation coefficient a=01

Logit uncertainty parameter B=3
(higher for smaller uncertainty)

Accident weighing factor w, =40
Exponents of the PT utility vy=05
Weighing factor for the negative PT utility w =2

Minimum acceleration Ain= -8 M/S
Maximum accel eration A = 4 M/IS
Acceleration normalizing factor ay=1m/s?

On the basis of the constant-velocity heuristic for the leader, itis
known that X,_1(t + T,) = Xa_1(t) + T, VE4(t). The constant-accel eration
heuristic for the follower gives

1
Xn(t + 1Tn) = Xn(t) + Vn(t)Tn + E anTﬁ

The crash probability can be written as

w05+ 5855,

T

@

p.(t+71,)=P| v, ()<

n

In the last step, the stochastic variable vE¥(t) is written in terms
of the standardized normal distribution by setting v (t) = v, (t) +
6(Vi1)Z, Where Z is the standardized Gaussian stochastic variable
(mean O, variance 1):

av, 1)z, + Ja -5 (1)

6 (o)1,

p.(t+1,)=P|Z<

av, ()7, + a5 -5, (1)

=P
o(v,4)1,

(©)

where A = duration and Av,(t) = v,(t) — v,.4(t) denotes the approaching
rate and ®(2) is the tabulated cumulative distribution function for
the standardized Gaussian.

Evaluation Process

Once the p,; are known, a driver enters the evaluation process.
Prospect theory is adapted for this purpose. The gain and losses are
expressed here in term of gains and losses in speed from the previ-
ous acceleration instancei — 1. Thegainis, however, limited by the
maximum desired velocity of the driver, and the losses are limited
by the nonnegative velocity constraint. If the gain and losses are
expressed interms of an abscissaAx= Av = a, X T,, thevaluefunction
Upr (a,) isdefined asfollows:

e} | (2

2 2
1+($)
2

v

(4)

UPT(an):
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where 0 <yandw are parametersto be estimated and &, is used for
normalizing purposes only. Without loss of generality, a,= 1 m/s?
(see Table 1); other valuesfor a, would only rescale the crash weight-
ing factor w,. The value function used in theinitial model (based on
the values of parametersshownin Table 1) isillustrated in Figure 3.
The value function captures three characteristics: (a) loss aversion
seen in the steeper slope with losses than with gains, (b) diminishing
sensitivity to increasing gains and losses, and (c) evaluation of out-
comesrelative to areference point, taken asthe speed in the previous
acceleration instance.

How adriver determineshisor her behavior isby sequentially eval-
uating the outcome of a candidate acceleration before each accelera-
tion or deceleration opportunity. |f driver n decidesto useapositive a,
at instance i, he may either be ableto increase hisvelocity by (a, x 1)
(gain) or will beinvolvedin arear-end collision. Inacollision, theloss
isassumed to berelated to a seriousnessterm k(v, Av) weighted by w:
when the seriousness of the driver increases, k(v, Av) increases. Asfor
W,, it represents the sengitivity to the loss caused by an accident. A
higher w, correspondsto conservativeindividuas, whereas alower w;
corresponds to drivers willing to take a higher risk with little concern
for crashing their vehicles. Conversely, if thedriver decelerates, hewill
lose a corresponding amount of speed (a, X 1,) (<0). That is,

U(a,)= (1~ p,;)Uer (a,) = Powck(v, Av) 8,20 ®)

where Upr (a,) isthe value function derived from Equation 4 and p,;
isthe probability of colliding with the rear-end bumper of the lead
vehicle given that no collision took placein thei — 1th acceleration
instance.

To reflect the stochastic response adopted by the drivers, the
acceleration of vehicle n a, car-rolowing(t + At;) is retrieved from the
following probability density function:

aiwexp[BXU(%)] a’mingansa'max
f(a,)= j exp[pxU (a’)]da’ (6)
0 otherwise

where B is a free parameter ( > 0) that reflects the sensitivity of
choicetotheutility U(a,). It can also reflect different preferences

Subjective PT utility
o

-4 -2 0 2 4
a (m/s?)

FIGURE 3 Value function (Equation 4) for evaluating different
acceleration alternatives.
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of the drivers or estimating uncertainties other than that of the
velocity of theleader. It should be noted that 3 can change with the
experiencei, reflecting agiven learning process. For example, 8 can
be higher for more experienced drivers, thereby reflecting a more
stabledriving style.

Free-Flow Model

For driver behavior during free-flow conditions, the logic adopted
in the Gipps model is adopted here (4). Each driver has adesired
velocity V,qesred- 1N €8CH time step of duration At, the acceleration
applied by the driver n to reach this velocity is given by

Vn,de;'red - Vn (t)

ar\,freeflow (t + At) = At (7)
Finaly, the chosen accelerationis
ah (t + At) = min[an,freeﬂow (t + At)l an,ca'-following (t + At):| (8)

MODEL IMPLEMENTATION

Before being calibrated against empirical data, the unconventional
structural form of the model requires a thorough study of its physi-
cal characteristics. Thisstudy includesimplementing the model and
testing its asymptotic properties so it can be assessed for feasibility.
The findings of the testing process in terms of sensitivity analysis
allow oneto conclude if the model isvalid.

Atthisstage, al N+ 1drivers(n=0, 1, ..., N) are assumed to
have identical parameters where sis the corresponding gap and Av
is the relative speed (Av > 0 when approaching). The basic model
developed in the previous section is implemented by making the
following specifications:

1. The estimation uncertainty o(v;) = av; of the velocity of the
leader is proportional to the velocity itself, that is, the relative error
(variation coefficient) o is constant (see Table 1).

2. The anticipation time horizon 7t is assumed to be the mini-
mum between the timeto collision tc = (§/Av) and some maximum
value Tpa:

S x>
T=1(s Av)=1 AV T ©)
T otherwise

Initial Plots

The model was tested by using the parameter values presented in
Table 1. Theresulting plotsare shownin Figures4 and 5. Remarkably,
in stochastic equilibrium, approximatetime headwaysof 1.5 sarekept
congtant in the car-following regime. These headway valuesare mainly
influenced by the term o, Where higher values of this quotient
lead to higher time headways (Figures 4a and 4b). The sensitivity to
relative speedsisinfluenced by o alone (the higher o is, the higher
the sensitivity, the string stability, and the accel eration variations)
(Figure 4c). Accordingly, thetime headway and the sensitivity to the
velocity differences can beinfluenced separately.
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Conversdly, if lower accel eration uncertaintiesare desired, thevalue
of B o< 1/c, should be decreased (Figure 5). Moreover, to increase
the skewness (third normalized moment), the crash weight w, has to
be increased. This can be aso accomplished by dightly decreasing B
for a constant variance. However, values of the order w; < 20 lead to
bimodal and unrealistic distributions: a new peak appears for very
high accelerations leading to crashes, and the prospect theory utility
can outweigh the crash penalty even for a crash probability p.= 1.

Asymptotic Expansion

Toillustrate better the behavior of the model, an asymptotic expan-
sion of the acceleration probability distribution (Equation 6) of this
model isuseful. A series of straightforward steps leads to

v=a=~N(a", c2) (10)

that is, the distribution of accelerationsis approximately given by a
Gaussian distribution whose moments are

a* arg (max [U(a)])

— 1Y)

a BU ,,(a*)
U’(a) (necessary for determining a* by the condition U(a*) = 0),
and U”(a) can be caculated andytically since thisimpliesthe deriva
tive of ®(2), whichisjust the density of aGaussian. Thevaluea® itself
needsto be calculated numerically. Because of the nonlinearities of
the utility Upr(a), it is not guaranteed that a* is unique. However,
all investigations presented in this paper show that it is unique for
the parameters of Table 1.

Efficient Implementation of Asymptotic Expansion

The major aim hereisto calculate the acceleration a* for which the
utility is maximal conditioned to given values of s, v, and Av.

Initial Estimate

At this early stage, it is useful to take the value of a* for y* =
v~ =w" =1, whereit can be calculated analytically asfollows. For
vy=w =1, thetotal utility (Equation 5) can be written as

U(a s v, Av):%—wccb[z(a)] 12)
where
Av+ Tar- S
z2(a)=—2 T (13)
av

and the prediction horizon is given by the minimum of the maximum
prediction time 1, and the time to collision:

(ij for Av > (ij
T=1(s Av) =4\ AV Tirex (14)

T otherwise

max
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FIGURE 4 Utility and acceleration probability density for (a) v = 20 m/s, Av = 0 m/s, and three values of gap s to leader;
(b) s = 20 m, Av = 0 m/s, and three values of velocity v to leader; and (c) s = 20 m, v = 0 m/s, and three values of

approaching rate Av.
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FIGURE 5 Contour plots of acceleration probability density (a) as function of v for s = 20 m, Av = 0 m/s; (b) as function of s for
v = 20 m/s, Av = 0 m/s; (c) as function of Av for v = 20 m/s, s = 20 m; and () for situation with standing vehicle or red traffic

light, v = Av for s = 30 m.

As a necessary condition for maximization and minimization
problems, U’(a) needs to be zero. Accordingly,

1
Ur(a)= -~ wefu(2)(2(2) (15
with the density of the standardized normal distribution:
1 7(22/2)

fy(z)=——=—¢e 16,

(D=7 (16)
and

(a)= —— @

"~ 20v

Itisessentia to the analytical solution that U” depends on a only
by means of the argument z(a) of the standardized Gaussian whereas
Z(a) does not depend on a at all. At maximum utility, one obtains

for zvalue,
z* =agmax(U(z))=- 2In(%f) (18)

where 7' is taken from Equation 17. Note that the negative square
root iseliminated sincethis correspondsto the crashing probabilities
smaller than 0.5, which isplausiblein all cases. The positive root
corresponds to aminimum of the utility. Inserting Equation 18 in
Equation 15 finally gives the following expression for the initial
estimate of the optimal acceleration a* = arg max(U(a)):

ar = i(i— Av+ocvz*)

19
Ty \T

max max

This equation is exact for alinear prospect theory utility or, in
other words, for aclassical utility theory (y* =y =w™=1).

Numerical Approximation

Here, the maximum of the utility cannot be computed analytically.
Sincethe analytical derivativesare easy to calculate and agood initial
estimateisknown for the optimal acceleration, one can use Newton's
method to find the optimum; its n + 1th iteration is defined by

F(a)
F'(a)

an+1 = ah - ao = a* (20)
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where

F(a)=U’(a) =U: (a) - w.f, (2) 7 () (21
and

F’(a)=U"(a)=U% (a)-w,f, (z)(z(a)(z’(a))2 + z”(a)) (22)

where

fu(2) = Gaussian density (Equation 16);
z(a) = argument of the Gaussian, given by Equation 13;
Z(a) = given by Equation 17, and Z’(a) = 0; and
U¢r (@) = second derivatives of the prospect theory utility U (a).

Figure6illustratesNewton' smethod for fining an optimal acceleration.

Standard Deviation of Acceleration Function

With known analytical derivatives U’(a) and U”(a), the standard
deviation of the acceleration is known if the acceleration at the
optimal utility is known (see Equation 11):

-1

oo )= S s v )

(23

Theresults are plotted in Figure 7.
The approximation presented in this section providesasimplified
and efficient method for implementing the formul ated model.

IMIODEL ANALYSIS AND ASSESSMENT

At this stage, the model is structured so that the stimuli influencing
driver behavior reflects the traffic conditions surrounding a given
vehicle. Thesestimuli are (a) the predicted vel ocity distribution of the
leading vehicle, (b) therelative speed between theleading vehicleand
the vehicle in question, and (c) the gap between the end bumper of
theleading vehicleand thefront bumper of thevehiclein question. The
sensitivity of the response (acceleration) to these stimuli isreflected
by parameters that may be related to the driver’s personality or the
corresponding vehicle' s characteristics:
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first iteration ===~
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Derivation U’(a) of subjective utility
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1. The parametersthat may be related to the driver’ s personality
are maximum anticipation time horizon, velocity uncertainty varia-
tion coefficient, logit uncertainty parameters (higher for higher
uncertainty), accident weighing factor, prospect utility exponents,
weighing factor for the negative prospect theory utility, and desired
velocity (see Table 1).

2. The parameters that may be related to the vehicle’s charac-
teristics are maximum acceleration and maximum decel eration
(see Table 1).

This structure reflects atrade-off between asimplicity facilitat-
ing the calibration task and acomplexity imitating the stochastic and
uncertain decision-making process adopted by drivers. If thisstructure
isto be further complicated, additional stimuli can be added. For
example, the model does not take into account the road geometry
explicitly. However, thistype of stimuli can beincluded implicitly by
modifying some model parameters (maximum acceleration, maxi-
mum deceleration, desired velocity, etc.) on the basis of geometric
factors (road curvature and smoothness, lane width, etc.).

Moreover, the stimuli emanating from the behavior of theleading
drivers are only considered in this model. To consider the behavior
of thefollowing drivers, the collision probability of a given vehicle
with its follower can be computed on the basis of Equation 2. The
probability density function of the accel eration can then be calculated
on the basis of the probability of colliding with the leading vehicle
or with the back vehicle (Equation 6). Furthermore, clues for the
deceleration of the leader given by braking lights or by the traffic
situation several vehicles ahead are not considered.

The properties of the model for real-life driver behavior can be
retrieved from Figures 4, 5, and 7. The model shows that during
equilibrium, the time headway is kept constant at avalue of 1.5s,
which isthe value reported in different studies on headway distribu-
tions (16, 17). These headwaysincrease when the drivers use higher
anticipation time T, thustaking more safety precautions. Theintu-
itive relationships between different driving parameters expressed
in Figure 4 can be summarized by Equation 19: higher acceleration
values correspond to higher-distance headways and lower anticipa-
tion times (myopic view). Moreover, as adriver approaches alead-
ing vehicle at ahigher speed (Av > 0), thisdriver tendsto use higher
deceleration rates.

Figure 5 shows the probabilistic side of the model, where different
probability density functions of the acceleration term are plotted in

1 ! T T T .
i derivation U’(a)
T initial guess -
! first iteration ===
0.5 k= : second iteration
0
0.5
-1
-4 3 2 1 0 1 2 3 4
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FIGURE 6 Finding utility maximum by using Newton's method.
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FIGURE 7 Acceleration at optimal utility and standard deviation (a) as function of velocity and approaching rate for
gap s = 20 m and (b) when approaching standing obstacle as function of velocity and remaining distance s.

different driving scenarios. When thetrafficismoving, in steady state
(Av=0), for s=20 m, the average velocity valueis 10 m/s (36 km/h
corresponding to a = 0). As this velocity value increases, the vari-
ance in the acceleration value increases (thicker probability density
line), whereas the expectation value of the acceleration decreases.
This decrease refl ects that the driver wants to obtain her safety time
gap again. Asin other micromodels, this can lead to instability for
higher velocitiesin densetraffic conditions (s= 20 m, k=50 vehicles
per kilometer) (5). The increasein the variance is a consequence of
the value function of the prospect theory: near the anchoring point
(zero acceleration) one acts more sensitively than far from the ref-
erence situation, that is, when accelerating or decelerating strongly.
If thevelocity valueisfixed tov=20 m/s, at steady state (Av=a=0),
the headway values range between 20 and 60 m. When faced with the
case of moving vehicle approaching a standing vehicle (Av = v),
the moving vehicle tries to decelerate stronger as Av increases
and s decreases. Furthermore, for Av = v >10 m/s, the decelera-
tion increases nearly quadratically and its valueis slightly higher
than the kinematically necessary deceleration,

V2

2s

When this same vehicleis at rest (v = 0), the applied acceleration
values range only between 1 and 2 m/s?, which is arealistic range
for accelerations from a standstill on aroad when only asmall gap
isprovided (0 < s< 20) (18).

Finally, Figure 7 presents the deterministic side of the model,
where the acceleration val ues computed at optimum utility (") are
provided with their corresponding variance. In the case of moving
traffic (Figure 7a), all vehicles use the maximal deceleration values
when 18 (m/s) £ v <40 (m/s) and 7 (m/s) < Av < 20 (m/s). Thelowest
variances are observed when Av increases below zero, allowing
thevehiclesto accelerateinstead of decelerate. Figure 7b denotesthe
expected braking decel eration when approaching a standing vehicle
or ared traffic light. For relatively small gaps or high velocities,
the kinematically necessary braking decel erations are adopted, |ead-
ing to asmooth and continuous braking maneuver to the standstill. For
small velocitiesand comparatively large gaps, acontinuoustransition
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to the accelerating regime is observed. Again, thisis the expected
driver behavior. Notice that in contrast to most other models, such
asthe Gipps model, the driving properties of keeping acertain time
headway and braking according to the necessary kinematical rules,
is not introduced explicitly into the model equations. In fact, these
are emergent properties resulting from the dynamics.

CONCLUSIONS AND FUTURE WORK

Exigting car-following modelsare deterministic and do not sufficiently
consider the cognitive aspects of the driving task. This paper intro-
duced acar-following model that places greater confidence on the
cognitive rationale of drivers. For that reason, prospect theory is
adopted for the eval uation process of gainsand losseswhile driving.
Thisallowsrisk taking when adriver isuncertain of theleader’ sfuture
behavior. Accidentswill be possible and no artificial constraintswill
be needed to prevent them.

The model implemented showed promising results for stochastic
equilibrium. The asymptotic extension of the car-following equations
is possible analytically and allows more efficient implementations
and faster execution. This makes such a cognitive-based stochastic
model simpleenough to compete with existing car-following models.

Decision-making theories such as prospect theory allow a more
solid psychologica background for the presented model, relating it
to arich literature not yet exploited in the traffic modeling domain:
stochasticity, risk taking, and accidents are well incorporated in the
modeled behavior of the drivers.

To test the validity of this model, a more complete implementa-
tion, including calibration and validation by comparison with real-
lifetrajectory data, remainsimportant. Thiswill allow studying the
resulting flow—density relationships as well as other macroscopic
performance measures (average travel times, average delay, etc.).
Moreover, thefree-flow and the lane-changing behaviorsare not fully
developed in this stochastic framework.
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