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Abstract: We investigate two causes for the instability of traffic flow: The time lag
caused by finite accelerations of the vehicles, and the delay caused by the finite
reaction times of the drivers. Furthermore, we simulate to which degree drivers
may compensate for these delays by looking several vehicles ahead and anticipate
future traffic situations. Since vehicular traffic flow is a multi-particle system with
many degrees of freedom, two concepts of linear stability have to be considered:
Local stability of a car following a leader that drives at constant velocity, and string
(chain) stability of a “platoon” of several vehicles following each other. Typically,
string stability is a much more restrictive criterion than local stability. We simulate
both types of stability with the human driver model (HDM)[M. Treiber et al.,
Physica A, Vol. 360 (1), 71-88 (2006)], which includes all the features above. We
found several remarkable results: (i) with a suitable anticipation, we obtained
string stability for reaction times exceeding the ”safe time headway”, which, to
date, has not yet been obtained for any other car-following model; (ii) parameter
changes that destabilize the model variant with zero reaction time may stabilize
the model with finite reaction times and vice versa, (iii) distributed reaction times
(every driver has a different reaction time) can stabilize the system compared to
drivers with identical reaction times that are equal to the mean.

Keywords: Car-following model, microscopic traffic simulation, human reaction
time, time-delayed system, local and string stability.

1. INTRODUCTION

Similarly to other feedback control systems, the
instability of traffic flow is caused by the delay
the system needs to respond to a certain action of
a controller (Brogan, 1991; Isidori, 1995). More
specifically, the controllers are the drivers, the
quantity to be controlled is the velocity of the own
vehicle, or the distance to the preceding vehicle,
the input stimuli are the observed distances and
velocities, respectively, and the actions to reach
desired velocities or distances consist in accelerat-

ing or braking (we do not consider lane changes
here).

While the modelling of human driving behavior is
a controversial topic in traffic science (Brackstone
and McDonald, 1999; Holland, 1998; Helbing,
2001), it is obvious, that an essential feature of
human (in contrast to automated) drivers is a
considerable reaction time, which is a consequence
of the physiological aspects of sensing, perceiving,
deciding, and performing an action (Shiffrin and
Schneider, 1977). This complex reaction time T ′

is of the order of 1.2 s (Green, 2000). In addition,



it varies strongly between different drivers (age,
gender), different stimuli, and different studies (cf.
the review of human perception-brake reaction
time studies (Green, 2000)). Remarkably, in dense
(not yet congested) traffic, the modal value in
the time headway distribution (which is the most
probable value) on Dutch or German freeways are
around 0.9 s (Tilch and Helbing, 2000; Knospe
et al., 2002), i.e., below the average value of the
reaction time. The most obvious means to model
reaction times is to introduce a dead time (time
delay) T ′ between the accelerating or braking
action of the driver, and the input stimuli to
which a driver reacts (Newell, 1961; Bando et
al., 1998; Davis, 2002). However, another source
of time delays is the finite acceleration capability
of the vehicles: The desired velocity is the integral
of the action, i.e., the acceleration. To obtain the
desired distance, one even has to integrate once
more.

In the context of feedback control theory, the task
of following a single vehicle can be modelled by a
nonlinear controller containing a nonlinear gain
function, a dead-time or delay element, and one
or two I-elements. The nonlinear gain function is
represented by a conventional car-following model
giving the instantaneous acceleration as a function
of the velocity of the own and the preceding vehi-
cle, and the gap between the vehicles. In this work,
we will use the intelligent driver model (IDM)
(Treiber et al., 2000) to be described below for this
purpose. Basically, the IDM describes automated
driving, sometimes called ’adaptive cruise control’
(ACC) (Kesting et al., 2006). Unlike machines,
human drivers routinely scan the traffic situation
several vehicles ahead and anticipate future traffic
situations leading, in turn, to an increased stabil-
ity. In the language of feedback control systems,
additional (nonlinear) derivative elements are in-
corporated into the control path.

For determining the linear local stability, one can
apply standard methods of control theory to the
linearized system yielding an upper limit of the
reaction time T ′, which decreases with the sensi-
tivity of the car-following model, i.e., how much
it accelerates (decelerates) if the actual distance
is too large (small).

However, it is well known in traffic theory for car-
following models with zero reaction time (Treiber
et al., 2000; Helbing, 2001), and also for macro-
scopic models (Treiber et al., 1999), that small
sensitivities (acceleration capabilities) increase
the linear string instability if a platoon of sev-
eral vehicles is considered, i.e., the perturbations
will amplify while propagating downstream the
chain of vehicles. Typically, string or collective
stability is a much more restrictive criterion than
local stability. The regime of string instability

can be further divided into a region of convective
instability where perturbations grow but finally
are convected out of the system (cf., e.g., Fig. 4
below), and a region of absolute instability.

In this contribution, we investigate, by means
of simulation, the influence of (i) reaction times,
(ii) acceleration capabilities, (iii) temporal antic-
ipation, and (iv) multi-vehicle look-ahead on the
stability of traffic flow. We put traffic dynamics
in the context of feedback control theory and dis-
cuss how the influencing factors mentioned above
change local stability, string stability, and the
limits where the traffic flow is accident-free (which
is an inherently nonlinear problem).

In Sec. 2, we present the models used for the
simulation. The intelligent-driver model (IDM)
(Treiber et al., 2000) will be used as instantaneous
nonlinear controller representing the characteris-
tics of automated driving. Its sensitivity is char-
acterized by the acceleration parameter a. The
recently proposed human driver model (HDM)
(Treiber et al., 2006) implements the human-
specific properties (reaction times and anticipa-
tions) in a systematic way.

In Section 3, we give the results and show how
each of the effects mentioned above influences the
traffic dynamics. With a suitable anticipation, we
obtained string stability for reaction times exceed-
ing the ”safe time headway”, which, to date, has
not yet been obtained for any other car-following
model. Furthermore, we show how the different
influences of reaction time and acceleration capa-
bility on local and string stability lead to an opti-
mal range of the acceleration parameter a rather
than a lower limit as proposed in the literature
up to now. Finally, we simulate, for the first time,
distributed (i.e., varying) reaction times.

In the concluding Section 4 we discuss the results
in the context of feedback control theory.

2. MICROSCOPIC TRAFFIC MODEL WITH
TIME DELAY AND ANTICIPATION

Most microscopic traffic models describe the in-
stantaneous acceleration and deceleration of each
individual ’driver-vehicle unit’ as a function of the
distance and velocity difference to the vehicle in
front and on the own velocity (Helbing, 2001). The
subclass of time-continuous micromodels (car-
following models) is of the general form

dvα
dt

= amic (sα, vα,∆vα) , (1)

where the own velocity vα, the net distance sα,
and the velocity difference ∆vα to the leading ve-
hicle serve as stimuli determining the acceleration
v̇mic. This class of basic models is characterized



by (i) instantaneous reaction, (ii) reaction only
to the immediate predecessor, and (iii) infinitely
exact estimating capabilities of drivers regarding
the input stimuli s, v, and ∆v, which also means
that there are no fluctuations. In some sense,
such models describe driving behavior similar to
adaptive cruise control (ACC) systems (Kesting
et al., 2006).

In the context of control theory, the acceleration
is the action to bring

• the own velocity vα towards the desired ve-
locity v0 if there is no obstruction from other
vehicles, and to the velocity vα−1 of the pre-
decessor otherwise,

• the observed distance sα towards the equilib-
rium distance se(vα−1). Of course, this con-
dition is only relevant in case of obstruction.
For models of the form (1), the equilibrium
distance function se(v) is given by

amic (se, v, 0) = 0. (2)

In general, the control function v̇mic is strongly
nonlinear, and there is a smooth transition from
the control targets for unobstructed traffic to that
of obstructed traffic. Notice that ’obstructed traf-
fic’ (i.e., it is not possible to drive at the desired
velocity) does not necessarily mean ’congested
traffic’.

In the following, we introduce the intelligent
driver model (IDM) (Treiber et al., 2000), which is
a simple car-following model with intuitive param-
eters. Furthermore, we present three aspects of
human driving behavior: (i) finite reaction times,
(ii) temporal anticipation, and (iii) looking sev-
eral vehicles ahead (spatial anticipation). These
extensions are formulated in a systematic way and
apply to all underlying models of the form (1)
(Treiber et al., 2006).

2.1 The intelligent driver model (IDM)

The IDM acceleration of each vehicle α is a contin-
uous function of the velocity vα, the net distance
gap sα, and the velocity difference (approaching
rate) ∆vα to the leading vehicle:

dvα
dt

= a

[

1−
(

vα
v0

)4

−
(

s∗(vα,∆vα)

sα

)2
]

. (3)

The IDM acceleration consists of a free acceler-
ation v̇free = a[1 − (v/v0)

4] (with v̇ indicating
the time derivative) for approaching the desired
velocity v0 with an acceleration slightly below a,
and the braking interaction v̇int = −a(s∗/s)2,
where the actual gap sα is compared with the
‘desired minimum gap’

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab

, (4)

which is specified by the sum of the minimum dis-
tance s0, the velocity-dependent safety distance
vT corresponding to the time headway T , and a
dynamic part. The dynamic part implements an
accident-free ‘intelligent’ braking strategy that, in
nearly all situations, limits braking decelerations
to the ‘comfortable deceleration’ b. Notice that all
five IDM parameters have an intuitive meaning.
The parameters used henceforth (unless stated
otherwise) are listed in Table 1. By an appropriate
scaling of space and time, the number of parame-
ters can be reduced from five to three.

2.2 Finite reaction time

A reaction time T ′ is implemented simply by
evaluating the right-hand side of Eq. (1) at time
t − T ′. If T ′ is not a multiple of the update
time interval, we propose a linear interpolation
according to

x(t− T ′) = βxt−n−1 + (1− β)xt−n, (5)

where x denotes any quantity on the right-hand
side of Eq. (1) such as sα, vα, or ∆vα, and xt−n
denotes this quantity taken n time steps before the
actual step. Here, n is the integer part of T ′/∆t,
and the weight factor of the linear interpolation
is given by β = T ′/∆t − n. We emphasize that
all input stimuli sα, vα, and ∆vα are evaluated at
the delayed time.

Notice that the reaction time T ′ is sometimes set
equal to the ‘safety’ time-headway T . However, it
is essential to distinguish between these times con-
ceptually. While the time headway T is a charac-
teristic parameter of the driving style, the reaction
time T ′ is essentially a physiological parameter
and, consequently, at most weakly correlated with
T . We point out that both the time headway T
and the reaction time T ′ are to be distinguished
from the numerical update time step ∆t, which is
sometimes erroneously interpreted as a reaction
time as well.

2.3 Temporal anticipation

We will assume that drivers are aware of their
finite reaction time and anticipate the traffic situ-
ation accordingly. Besides anticipating the future
distance (Davis, 2002), we will anticipate the fu-
ture velocity using a constant-acceleration heuris-
tics. The combined effects of a finite reaction time,
and temporal anticipation lead to the following
input variables for the underlying car-following
model (1):

dvα
dt

= v̇mic(s′α, v
′

α,∆v′α) (6)

with
s′α(t) = [sα − T ′∆vα]t−T ′ , (7)



v′α(t) = [vα + T ′v̇α]t−T ′ , (8)

and

∆v′α(t) = ∆vα(t− T ′). (9)

Notice that in Eq. (8) the time delay occurs in
the acceleration v̇ as the highest derivative, i.e.,
the linearized model is of neutral type. We did
not apply the constant-acceleration heuristics for
the anticipation of the future velocity difference,
or the future distance, as the accelerations of
other vehicles cannot be estimated reliably by hu-
man drivers. Instead, we have applied the simpler
constant-velocity heuristics for these cases. Notice
that the proposed heuristics are parameter-free.

These ’anticipative’ terms include derivative quan-
tities (the accelerations), and velocity differences.
In the framework of control theory, they act as
nonlinear derivative elements in the control path.

2.4 Spatial anticipation for several vehicles ahead

Let us now split up the acceleration of the un-
derlying microscopic model into a single-vehicle
acceleration on a nearly empty road depending on
the considered vehicle α only, and a braking de-
celeration taking into account the vehicle-vehicle
interaction with the preceding vehicle:

v̇mic(sα, vα,∆vα) := v̇free
α + v̇int(sα, vα,∆vα).

(10)

Next, we model the reaction to several vehicles
ahead just by summing up the corresponding
vehicle-vehicle pair interactions v̇int

αβ from vehicle
β to vehicle α for the na nearest preceding vehicles
β:

dvα
dt

= v̇free
α +

α−1
∑

β=α−na

v̇int
αβ , (11)

where all distances, velocities and velocity differ-
ences on the right-hand side are given by Eqs.(7)
- (9). Each pair interaction between vehicle α and
vehicle β is specified by

v̇int
αβ = v̇int (sαβ , vα, vα − vβ) , (12)

where

sαβ =

α
∑

j=β+1

sj (13)

is the sum of all net gaps between the vehicles α
and β. For the IDM, there exists a closed-form
solution of the multi-anticipative equilibrium dis-
tance as a function of the velocity. Notice that in
the limiting case of anticipation to arbitrary many
vehicles we obtain limna→∞ γ(na) = π/

√
6 =

1.283 for the IDM. This means that the com-
bined effects of all non-nearest-neighbor interac-
tions would lead to an increase of the equilibrium
distance by just about 28% (Treiber et al., 2006).

Table 1. Parameters of the intelligent
driver model (IDM) with the values
used in this paper unless stated other-
wise. The IDM is used together with an
explicit reaction time T ′ (cf. Sec. 2.2),
temporal anticipation (cf. Sec. 2.3), and
spatial anticipation (cf. Sec. 2.4). The
vehicle length is 5 m. Furthermore, we
restrict the maximum braking decelera-
tion to 9m/s2 as the physical limit on

dry roads.

Parameter Value

Desired velocity v0 120 km/h

Save time headway T 1.5 s

Jam distance s0 2 m

Maximum acceleration a 2.0 m/s2

Desired deceleration b 2.0 m/s2

3. MICROSCOPIC TRAFFIC SIMULATIONS
OF VEHICLE PLATOONS

We investigate the string stability by simulat-
ing a platoon of vehicles following an externally
controlled lead vehicle. As initial conditions, we
assume the platoon to be in equilibrium, i.e., the
initial velocities of all platoon vehicles are equal to
vlead and the gaps equal to se(vlead) (cf. Eq. (2)),
so that the initial model accelerations are equal
to zero.

The externally controlled vehicle drives at vlead =
25m/s for the first 1000 s, before it decelerates
with −2m/s2 for 3 s, which is a realistic scenario
in daily traffic situations. This braking maneuver
reduces the velocity to vlead = 19m/s, which is
kept constant until the simulation ends at t =
2500 s. Figure 1 shows the time series of the ac-
celeration and velocity of the lead vehicle and the
distance to the lead vehicle of the second car in the
platoon. This braking maneuver serves as pertur-
bation for all simulations throughout this paper.
Notice that the nonlinear dynamics resulting from
this strong perturbation cannot be handled by
linearization anymore.

In all simulations, we have used an explicit in-
tegration scheme assuming constant accelerations
between each update time interval ∆t according
to

vα(t+∆t) = vα(t) + v̇α(t)∆t,

xα(t+∆t) = xα(t) + vα(t)∆t+
1

2
v̇α(t)(∆t)2.

(14)
The update time interval is set to ∆t = 0.1 s.
We will use the IDM parameters given in Table 1
unless stated otherwise. If na is larger than the
number of preceding vehicles (which can happen
for the first vehicles of the platoon) then na is
reduced accordingly. Furthermore, we restrict the
maximum braking deceleration to 9m/s2, which
is the physical limit on dry roads.
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Fig. 1. Acceleration and velocity time series for
the externally controlled first vehicle of the
vehicle platoon. The lead vehicle decelerates
at t = 1000 s with −2m/s2 inducing a per-
turbation to the platoon of vehicles. The dis-
tance of the second car is in equilibrium be-
fore the braking maneuver and adjusts to the
new equilibrium distance after a while. This
braking maneuver serves as perturbation in
all simulations.

3.1 Stability boundaries for a platoon of vehicles

We distinguish three stability regimes: (i) string
stability, i.e., all perturbations introduced by the
deceleration of the lead vehicles are damped away,
(ii) an oscillatory regime, where perturbations
increase but do not lead to crashes, and (iii)
an instability with accidents. The condition for a
simulation to be in the crash regime (iii) is fulfilled
if there is some time t and some vehicle α so that
sα(t) < 0. The condition for string stability is
fulfilled if |v̇α(t)| < 3m/s2 at all times (including
the period where the leading vehicle decelerates)
and for all vehicles. Additionally, string stability
requires that, for sufficiently long times after the
braking maneuver, the accelerations of all vehicles
have to vanish. Finally, if neither the conditions
for the crash regime nor that for the stable regime
are fulfilled, the simulation result is attributed to
the oscillatory regime.

Figure 2 shows the three stability regimes as a
function of the reaction time T ′ and the platoon
size n for the following simulation scenarios:

(1) The first scenario without neither spatial an-
ticipation (na = 1) nor temporal anticipation
serves as reference. This case corresponds to

the conventional IDM car-following model
with finite reaction time (cf. Sec. 2.2). A
platoon of 100 vehicles is stable for reaction
times of up to T ′

c1 = 0.9 s. Test runs with
larger platoon sizes (up to 1000 vehicles)
did not result in different thresholds sug-
gesting that stability for a platoon size of
100 essentially means string stability for ar-
bitrarily large platoon sizes. Reaction times
T ′ > T ′

c2 = 1.15 s lead to accidents due to
the collective instability in combination with
the applied braking limit of 9m/s2.

(2) The second scenario extends the reference
scenario by implementing the parameter-free
temporal anticipation (cf. Sec. 2.3), which
leads to an increased stability, particularly
for the second phase boundary T ′

c2.
(3) The third simulation scenario implements the

spatial anticipation of looking na = 4 vehi-
cles ahead (cf. Sec. 2.4) as extension com-
pared to the reference case. This anticipation
increases the stability and shifts both bound-
aries, T ′

c1 and T ′

c2 to higher values.
(4) The forth scenario combines temporal and

spatial anticipation (na = 4), which leads
to the most stable system. Particularly, the
second boundary is shifted to values of T ′

c2 ≥
2 s. Remarkably, the simulation shows that,
with a suitable anticipation, we could obtain
string stability for reaction times exceeding
the ”safe time headway” of T = 1.5 s.

So far, we have assumed constant and identical
reaction times T ′

α = T ′ for all vehicles α in the
simulation. Since the human reaction time varies
strongly depending on the concrete situation and
between different persons (Green, 2000), we also
investigate the role of distributed reaction times,
i.e., every driver has a different reaction time T ′

α

with the mean value 〈T ′

α〉 = T ′. To this end, we
generalize the concept of linear interpolation of
Eq. (5) to individual delays for each driver-vehicle
unit α.

Figure 3 shows the simulation results for the refer-
ence scenario (1) without anticipation and the sce-
nario (4) with temporal and spatial anticipation
(na = 4). The reaction time has been uniformly
distributed within a range of ±30% around the
mean value. Interestingly, the phase boundary T ′

c1

between the stable and oscillatory regime is nearly
not affected by the variation of the reaction time.
Remarkably, the phase boundary T ′

c1 for the forth
scenario is even slightly shifted towards higher
stability for platoon sizes of n ≤ 60 vehicles.
However, the critical value T ′

c2 is slightly reduced
when dealing with non-identical reaction times.
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Fig. 2. String stability regimes of a platoon of identical vehicles as a function of the platoon size and
the reaction time T ′ for the scenarios (1) - (4) described in Sec. 3.1. The graph (a) depicts scenario
(1) assuming conventional follow-the-leader behavior (na = 1) without temporal anticipation; (b)
with temporal anticipation (na = 1) (scenario (2)); (c) reaction to na = 4 vehicles without temporal
anticipation (scenario (3)); (d) reaction to na = 4 vehicles with temporal anticipation (scenario
(4)). In the diagrams (b)-(d), the first scenario of graph (a) is plotted with thin lines for purposes
of comparison. The externally controlled first vehicle induced a perturbation according to Fig. 1. In
the ‘stable’ phase, all perturbations are damped away. In the oscillatory regime, the perturbations
increase, but do not lead to crashes.
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Fig. 3. String stability regimes of a platoon of vehicles α with different individual reaction times. The
reaction time T ′

α has been distributed uniformly within 30% around the mean value 〈T ′〉 = T ′. The
diagram (a) refers to the scenario (1) without temporal nor spatial anticipation, while the diagram
(b) corresponds to the forth scenario with temporal and spatial anticipation (na = 4). The thin lines
display the phase boundaries for identical reaction times. The variation of the reaction times leads
to a nearly unchanged (see (a)) or even slightly increased (see (b)) stability boundary T ′

c1 between
the stable and oscillating regime.
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Fig. 4. Time series of the acceleration for se-
lected platoon vehicles. The reaction time is
T ′ = 0.9 s, and the IDM parameter for the
maximum acceleration is set to a = 1m/s2.
The vehicles use temporal anticipation but
no spatial anticipation (na = 1). The first
vehicle induces a perturbation due to the
braking maneuver at t = 1000 s. The initial
perturbation do not increase while propa-
gating through the platoon of vehicles. The
system is string stable.

3.2 Role of vehicle acceleration

As mentioned in the introduction, there are basi-
cally two different sources of instability for traffic
flow: The finite reaction time modelled by the
HDM parameter T ′, and finite acceleration capa-
bilities modelled by the IDM parameter a, which
gives the maximum acceleration.

Clearly, stability always decreases when T ′ in-
creases. In this subsection, we investigate how the
acceleration parameter a influences the instability
mechanisms and come to the remarkable result
that stability reaches its maximum for a certain
range of values for a (that depends on T ′). Traffic
flow becomes more unstable if the value of a is
higher or lower than this range.

Figure 4 shows time series of the acceleration of
some selected vehicles for scenario (1) with T ′ =
0.9 s, and the acceleration parameter changed
from 2 m/s2 to the approximatively ’optimal’
value 1 m/s2 . The system is string stable: the
initial perturbation of 2 m/s2 dissipates quickly.

In Figure 5, the acceleration parameter is lowered
from 1 m/s2 to a = 0.3 m/s2 . The effect is
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Fig. 5. Time series of the acceleration for the same
scenario as in Fig. 4, but the IDM parameter
for the maximum acceleration is reduced to
a = 0.3m/s2. The initial perturbation caused
by the braking maneuver of the first vehicle is
firstly reduced (car 10), but finally increases
while propagating upstream resulting in a
stop-and-go wave for the car 100. More stop-
and-go waves are triggered as shown in Fig. 6.

as expected (Treiber et al., 2000; Helbing, 2001;
Treiber et al., 1999): The initial perturbation
decreases for the first few vehicles (the system
is locally stable), before it increases again for
the next vehicles, and finally leads to a traffic
breakdown in the neighborhood of vehicle 100 at
a simulated time t ≈ 1250 s: The system is string
unstable. After the first breakdown, further stop-
and-go waves develop (Fig. 6).

Remarkably, the system becomes unstable as well
when increasing the acceleration capability from
the reference value 1 m/s2 to a = 2.5m/s2

as shown in Fig. 7. The instability mechanism,
however, is different. For low values of a, the
traffic breakdown is initially triggered by a long-
wavelength instability as can be seen in Fig. 5
in the plots for the cars 10 and 50, before ad-
ditional shorter oscillations appear immediately
before breakdown (vehicles 80 and 100). In con-
trast, the initial instability for high values of a has
its maximum growth rates at shorter frequencies
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Fig. 6. Patterns of stop-and-go waves. The simula-
tion is identical to that of Fig. 5, but vehicles
further upstream are shown on a different
time scale. The period of the stop-and-go
waves is about 40 s.

(of about 4 s), which can be seen from Fig. 7 for
the vehicle sequence 4, 10, and 20 leading to the
first stop-and-go wave, and the sequence 50, 60,
70, leading to the second one. Further stop-and-
go waves develop at later times for vehicles further
upstream. Interestingly, the period of the resulting
stop-and-go waves is about the same for the high-
wavelength, and low-wavelength mechanisms to
instability.
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Fig. 7. Time series of the acceleration for the same
scenario as in Fig. 4, but the IDM parameter
for the maximum acceleration is increased to
a = 2.5m/s2. Again, the first vehicle induces
a perturbation due to the braking maneuver
at t = 1000 s (not shown here). The increased
acceleration parameter a in combination with
the delayed reaction causes higher frequencies
with periods about 4 s that finally trigger
stop-and-go-waves of a much higher period
(about 50 s).



4. DISCUSSION AND CONCLUSIONS

In this contribution, we have investigated two
causes for the instability of traffic flow, the time
lag caused by finite accelerations of the vehicles,
and the delay caused by the finite reaction time
of the drivers. Furthermore, we have simulated to
which degree drivers may compensate for these
delays by looking several vehicles ahead and an-
ticipate future traffic situations.

Since vehicular traffic flow is a multi-particle sys-
tem with many degrees of freedom, two concepts
of linear stability have to be considered: Local
stability of a car following a leader that drives at
constant velocity, and string or collective stability
of a platoon of several vehicles following each
other. Typically, string stability is a much more
restrictive criterion than local stability.

Our main results are:

(i) By means of simulation, we determined the
string stability boundaries as a function of
the reaction time T ′ for a variable platoon
size of vehicles. With a suitable spatial and
temporal anticipation, we obtained string
stability for reaction times exceeding the
”safe time headway”, which, to date, has not
yet been obtained for any other car-following
model.

(ii) When varying the maximum acceleration ca-
pability, we come to the remarkable result
that stability reaches its maximum for a
certain range of values for a (that depends
on the reaction time T ′). Traffic flow be-
comes more unstable if the value of the max-
imum acceleration is higher or lower than
this value. This can be understood by the
interplay between the two mechanisms to in-
stabilities: If the value of T ′ and a are both
comparatively high, then the ratio between
the reaction time and the time scale τ ≈ v0/a
of velocity changes is high leading to insta-
bilities on the level of individual vehicles.
Conversely, for low values of a, the lag time
scale τ itself leads to the well-known col-
lective instabilities already observed for zero
reaction time.

(iii) Distributed reaction times, i.e., every driver
has a different reaction time, can stabilize
the system compared to drivers with identical
reaction times that are equal to the mean.
Generally, however, the effect introduced by
the heterogeneity among drivers is small.
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