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Traffic Flow Dynamics: Instability and Breakdown

Traffic Flow Breakdown: Microscopic Simulation

www.traffic-simulation.de
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Traffic Flow Dynamics: Instability and Breakdown

Instability: Perturbations grow to Stop Waves

Sugiyama et al. (2008)

www.traffic-simulation.de

Delayed reaction to slight braking maneuver requires stronger reaction
Growing perturbations in upstream direction
Wave propagates against driving direction with about -15 km/h:

cprop = vehicle length + minimal gap
time gap ≈ 6 m + 3 m

1.8 s = 5 m
s = 18 km

h
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Traffic Flow Empirics: Breakdown and Congestion Patterns

First Measurements (Greenshields, 1933/35)
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Cross-Sectional Measurements by Induction (e.g.
A5/Frankfurt)

http://traffic-flow-dynamics.org/traffic-states
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Trajectory Data: Treiterer (1970)
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Trajectory Data: Coifman (Highway 99, second lane)

Arne Kesting (www.akesting.de) Intro to Traffic (Flow) Phenomenaand (Macroscopic) ModelingNovember 2019 12 / 1



Traffic Flow Empirics: Breakdown and Congestion Patterns

Sample of Trajectories: Floating-Car Data (FCD)

Arne Kesting (www.akesting.de) Intro to Traffic (Flow) Phenomenaand (Macroscopic) ModelingNovember 2019 13 / 1
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Open System: Traffic Flow Dynamics at Bottleneck

www.traffic-simulation.de
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Spatio-Temporal Dynamics from Loop Detector Data

traffic-flow-dynamics.org/traffic-states Summary of ’stylized facts’
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http://www.traffic-flow-dynamics.org/traffic-states
http://dx.doi.org/10.1016/j.trc.2011.09.002


Traffic Flow Empirics: Breakdown and Congestion Patterns

Characteristic Speeds of Traffic Jam Fronts

Downstream jam front:
Fixed (at bottleneck):
V = 0
Moving:
V ≈ −15 km/h

Upstream jam front
No charact. speed
Balance of
in-/out-flow
(demand / supply)

Frequency of waves:
Depends on
bottleneck strength
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Flow Breakdown at Bottlenecks

Flow Breakdown at
bottlenecks
Permanent at fixed
locations:

on-/off-ramps, uphill
gradients, traffic light,
etc.

Spontaneous:
accident, etc
snowplough, etc.

(Moving bottleneck:
snowplough)
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Definition of Bottleneck

Bottleneck
We define a bottleneck as a local reduction of the road capacity.
Bottlenecks can be permanent attributes of the infrastructure (e.g.,
on-ramps, off-ramps, roadworks, etc.) or temporary, e.g., when caused by
accidents.
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Characteristic speed for all perturbations: −15± 3 km/h
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Localized Congestion Patterns: Pinned or Moving
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Rich Spatio-Temporal Congestion Patterns (Loop Data)
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Rich Spatio-Temporal Congestion Patterns (FCD)
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Traffic Flow Empirics: Breakdown and Congestion Patterns

Three Ingredients for Traffic Flow Breakdown

www.traffic-simulation.de

3 Conditions for Traffic Flow Breakdown
High traffic load (pre-condition for propagating perturbations)
Active Bottleneck (’weakest link’)
Disturbances caused by individual drivers (as trigger)
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Modeling Traffic Dynamics: An Overview

Traffic Flow Models

Time Scale Field Models Aspect of Traffic (examples)
< 0.1 s vehicle dynamics sub-microscopic control of engine and brakes

1 s
traffic flow
dynamics

car-following models
macroscopic models

reaction time, time gap
10 s acceleration and deceleration

1 min cycle period of traffic lights
10 min stop-and-go waves

1 h

transportation
planning

route assignment
traffic demand

peak hour
1 day daily demand pattern
1 year building/changing infrastructure
5 years statistics socioeconomic structure
50 years age pyramid demographic change
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Modeling Traffic Dynamics: An Overview

Traffic Modeling Aspects: Dynamics ↔ Planning

Common: Time-dependent traffic phenomena
Temporal: Minutes/hours ↔ hours/days/years
Objective: Externally given demand and infrastructure ↔ Dynamics of
demand, changes in infrastructure, policies, land-use
Subjective: Human (automated) driving behavior (accelerating,
braking, lane-changing, turning, etc) ↔ Trip, mode, route, . . . choice

Traffic Flow Dynamics
Collective effects and phenomena arising from accelerating, braking,
lane-changing behavior of vehicle-driver units
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Modeling Traffic Dynamics: An Overview

Model Categories
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Modeling Traffic Dynamics: An Overview

Mathematical Structure

Partial differential equations
Both location x and time t continuous as independent vars, e.g.
V (x, t) (Lighthill-Witham-Richards, 1955/56)
Coupled ordinary differential equations
Continuous state vars depend on time only, e.g. vα(t), and on other
vehicles. Car-following models, e.g. Intelligent Driver Model, 2000

Coupled iterated maps
Discrete time steps ∆t (as parameter) with continous state, e.g.
xα(t), vα(t)
Celluar Automata
All variables discrete: Space devided into fixed cells, time update in
fixed intervals, e.g. Nagel-Schreckenberg model, 1992

Discrete state, continous in time
e.g. lane-changing models (with integer-based lane index)
Static models (traffic stream models)
Pair-wise relations between macrosopic state vars, e.g. fundamental
diagram Q(ρ), capacity restraint function for (link) travel time τ(Q)Arne Kesting (www.akesting.de) Intro to Traffic (Flow) Phenomenaand (Macroscopic) ModelingNovember 2019 29 / 1
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https://doi.org/10.1051/jp1:1992277


Modeling Traffic Dynamics: An Overview

References

http://traffic-flow-dynamics.org www.verkehrsdynamik.de
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Traffic Observables and Flow-Density Relation

Traffic Flow Observables

Definition (Traffic Flow Q)
Number of vehicles ∆N passing a cross-section at x within a time interval
∆t:

Q(x, t) = ∆N
∆t

Definition (Average Speed V )
(Arithmetic) mean speed of the ∆N vehicles passing a cross-section at x
during an aggregation interval ∆t.

Definition (Traffic Density ρ)
Number of vehicles N on a road segment ∆x at a given time t:

ρ(x, t) = N

∆x
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Traffic Observables and Flow-Density Relation

Speed-Density Relation from Loop Detectors (all lanes)

Why does the average speed decrease again for small densities?
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Traffic Observables and Flow-Density Relation

Speed-Density Relation: Desired Speed

ρ ≈ 0: drivers usually not influenced by others
For ρ→ 0: average free speed V0 (also: desired speed)
Minimum of actual desired speed, physically possible attainable
speed, speed limit
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Traffic Observables and Flow-Density Relation

Flow-Density Relation

Determine the maximum density ρmax, the maximum flow, and the
capacity drop using the fit lines.
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Traffic Observables and Flow-Density Relation
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Macroscopic (First Order) Models

Models for spatio-temporal dynamics of ρ(x, t), Q, V
Foundations of every macroscopic traffic model:

Hydrodynamic Relation Q = ρV
Continuity equation: derived from conservation of vehicle flows
Both equations parameter-free → hold for any macroscopic model

1 Lighthill-Witham Richards (LWR) Models
2 LWR for triangular fundamental diagram
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Hydrodynamic Flow-Density Relation

’Flow equals density times speed’

Q(x, t) = ρ(x, t)V (x, t) check: N∆t = N

∆x
∆x
∆t

Derivation: ∆n = ρ∆x vehicles pass x0 in ∆t = ∆x/V

⇒ for x0 : Q = ∆n
∆t = ρ∆x

∆t = ρV
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Lighthill-Whitham-Richards Model (1955/1956)

Continuity equation is partial differential equation for ρ and V :

∂ρ

∂t
+ ∂(ρV )

∂x
= 0

Describes rate of change in density in terms of gradients of flow
With hydrodynamic relation Q = ρV third quantity can be derived
Additional equation for flow (or speed) needed to ’complete’ the
model

Macroscopische First Order Models
Since the continuity equation is completely determined by the geometry of
the road infrastructure, the macroscopic models differ in their modeling of
speed or flow, only.
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Lighthill-Whitham-Richards Model (1955/1956)

Assumption: Q or V always in local equilibrium w.r.t. actual density
Q resp. V follows instantaneously ρ:

Q(x, t) = Qe(ρ(x, t)) resp. V (x, t) = Ve(ρ(x, t)).

Q(x, t) and V (x, t) coupled to ρ(x, t) (static equilibrium)
Speed-Density relation: Ve(ρ)
Fundamental diagram: Qe(ρ) = ρVe(ρ)
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Flow-Density Relation and Fundamental Diagram

Definition
The flow-density diagram represents aggregated empirical data that
generally describes non-stationary heterogeneous traffic, i.e., different
driver-vehicle units far from equilibrium.
The fundamental diagram describes the theoretical relation between
density and flow in stationary homogeneous traffic, i.e., the steady state
equilibrium of identical driver-vehicle units.
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Lighthill-Whitham-Richards Model (LWR)
Continuity equation (homogenous road segment)

∂ρ

∂t
+ ∂(ρV )

∂x
= 0

With chain rule
∂Qe
∂x

= dQe(ρ)
dρ

∂ρ

∂x
=⇒
LWR Model (homogenous road segment)

∂ρ

∂t
+ dQe(ρ)

dρ
∂ρ

∂x
= 0

Inhomogenous segment or on-/off-ramps → additional terms
Qe(ρ) not specific → LWR Model class
Only one dynamic equation → First-order models
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Propagation of Density Variations

Non-linear wave equations describe so-called kinematic waves
Propagation velocity c̃ for those waves (density variations)

=⇒
c̃(ρ) = dQe

dρ = d(ρVe(ρ))
dρ

c̃ depends on density
Proportional to gradient of fundamental diagram

→ Density variations propagate in or against driving direction
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Propagation of Density Variations
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Relative Propagation Velocity w.r.t. Vehicle Speed
With

c̃(ρ) = Q′
e(ρ) = d(ρVe(ρ))

dρ = Ve(ρ) + ρV ′
e (ρ)

⇒ relative velocity w.r.t. vehicle speed V

c̃rel(ρ) = c̃(ρ)− V = c̃(ρ)− Ve(ρ) = ρV ′
e (ρ)

V ′
e (ρ) ≤ 0 ⇒ density perturbations propagate backwards from drivers’

perspective
Microscopic view: drivers react only to leading vehicle but not to
vehicles behind
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Shock Waves in LWR

LWR equation describes density waves with different propagation velocities
(the lower the density, the higher the propagation velocity)

⇒ Upstream wave front becomes steeper while downstream front disperses
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Shock Waves in LWR

Transition from free → congested: traffic becomes discontinuous
Vehicles from congested → free: ’traffic’ accelerates less and less
(dispersion fan)

=⇒ LWR unrealistic
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Three Characteristic Velocities in LWR

1 The propagation velocity of
density variations c̃(ρ) = Q′

e(ρ) is
given by the slope of the
fundamental diagram.

2 The propagation velocity of
shock fronts c12 is given by the
slope of the secant connecting
points of the fundamental diagram
corresponding to traffic on either
side of the front.

3 The vehicle speed Ve = Qe(ρ)/ρ is
given by the slope of the secant
connecting the origin with the
corresponding point on the
fundamental diagram.
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Example: Spatio-Temporal Dynamics in LWR

Inflow: Qin at ® (later decrease to )
Temporary bottlenecks: A with capacity KA = Qtot

2 , B full road block
with KB = 0, and C with capacity KC = Qtot

3
3 trajectories indicating vehicle speeds
Transition from higher to lower densities: ’soften’ over time while
remaining discontinous (shocks)
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Example: Spatio-Temporal Dynamics in LWR

A reduces flow to KA = Qtot
2 , since Qin > KA → traffic congestion

Downstream of bottleneck free traffic (Zustand )
Congestion upstream (Zustand ±), jam front with c36 < 0, stationary
at bottleneck c62 = 0
Velocity in congested traffic V6 = Q6/ρ6 > 0
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Example: Spatio-Temporal Dynamics in LWR

Full road block B reduced flow up- and downstream to 0
Upstream: maximum density (Zustand ²), downstream empty road
(Zustand ¬)
Transition speeds c67 < c37 < c36 < 0 and c71 = 0 of course
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Example: Spatio-Temporal Dynamics in LWR

Blockage B deactivated with transition velocity c74 ≈ c67 < 0
Transition from standstill to maximum (out-)flow
(Softening (dispersion) often unrealistic)
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Example: Spatio-Temporal Dynamics in LWR

C: up- and downstream flows Qtot
3 = Qtot

5 , → c53 = 0
Growing traffic jam propagates in upstream direction with c45 < 0
Stationary transition c35 = 0 at bottleneck
Reduced inflow: shrinking traffic jam with downstream front velocity
c25 > 0
Deactivation of bottleneck: transition from congested → maximum
flow progages backwards with c54 < 0
Until reaches upstream jam front → complete resolution of traffic jam
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

LWR with Triangular Fundament Diagram

Qe(ρ) =
{
V0ρ falls ρ ≤ ρK (free traffic)
1
T

[
1− ρ

ρmax

]
falls ρK < ρ ≤ ρmax (congested traffic)

Easy to solve
Two propagation velocities for perturbations, and no dispersion
Section-Based Model, discrete version: Cell-Transmission Model
(CTM)
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Macroscopic Modeling: Continuity Equation and First-Order (LWR)
Models

Beyond LWR: Macroscopic Models with Dynamic Velocity

LWR with single dynamic equation, V (x, t) without own dynamics
Instantaneous adaptation of vehicle speed unrealistic (finite
acceleration)
LWR without traffic instabilities (growing stop-and-go waves)
→ Not velocity but acceleration as function of traffic situation
V second dynamic variable (second-order models)
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