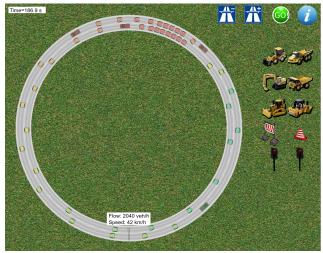
Intro to Traffic (Flow) Phenomena and (Macroscopic) Modeling TomTom Berlin


Arne Kesting

www.akesting.de

November 2019

- Traffic Flow Dynamics: Instability and Traffic Breakdown
- ② Collective Dynamics: Empirical Data and Congestion Patterns
- Traffic Modeling: Dynamics vs. Planning
- Traffic Observables and Flow-Density Relation
- Solution Modeling: Fundamental Diagram and First-Order Models

## Traffic Flow Breakdown: Microscopic Simulation





#### Traffic Flow and General

| Density/lane |  | 30/km |
|--------------|--|-------|
| Fruck Perc   |  | 10%   |
| Fimewarp     |  | 8     |

#### **Car-Following Behavior**

| Max Accel a  | 0.3 m/s <sup>2</sup> |
|--------------|----------------------|
| Max Speed v0 | 108 km/h             |
| Time Gap T   | 1.2 s                |
| Min Gap s0   | 2 m                  |
| Comf Decel b | 3 m/s <sup>2</sup>   |

#### Lane-Changing Behavior

 LC Threshold
 0.4 m/s²

 Right Bias Cars
 0.05 m/s²

 Right Bias Trucks
 0.2 m/s²

- Change the road geometry by dragging
- · Click onto the road to disturb traffic flow
- Drag obstacles or construction vehicles to create new bottlenecks
- Drag traffic lights to the road and click on them to toggle between red and light
- · Use the info button repeatedly for more info

www.traffic-simulation.de

Arne Kesting (www.akesting.de)

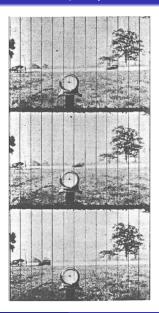
Traffic Flow Dynamics: Instability and Breakdown

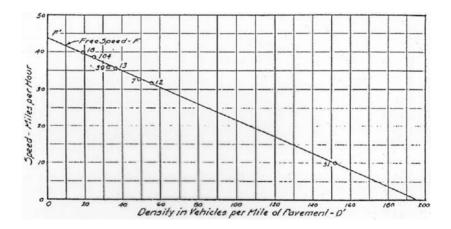
#### Instability: Perturbations grow to Stop Waves

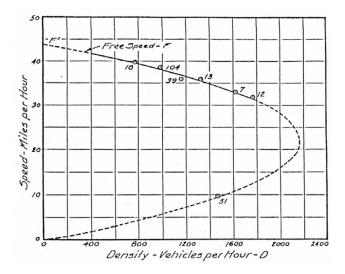


#### ▶ Sugiyama et al. (2008)

- Delayed reaction to slight braking maneuver requires stronger reaction
- Growing perturbations in *upstream* direction
- Wave propagates against driving direction with about -15 km/h:

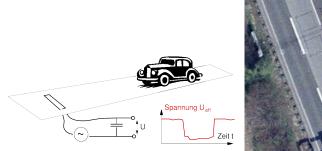

$$c_{\rm prop} = \frac{{\rm vehicle\ length\ +\ minimal\ gap}}{{\rm time\ gap}} \approx \frac{6\,{\rm m} + 3\,{\rm m}}{1.8\,{\rm s}} = 5\,\frac{{\rm m}}{{\rm s}} = 18\,\frac{{\rm km}}{{\rm h}}$$


#### Overview


- Traffic Flow Dynamics: Instability and Traffic Breakdown
- **2** Collective Dynamics: Empirical Data and Congestion Patterns
- Traffic Modeling: Dynamics vs. Planning
- Traffic Observables and Flow-Density Relation
- S Macroscopic Modeling: Fundamental Diagram and First-Order Models



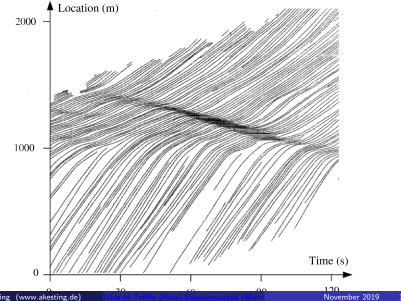






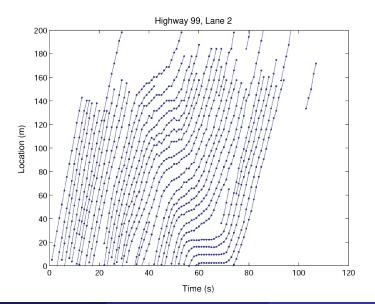



Traffic Flow Empirics: Breakdown and Congestion Patterns

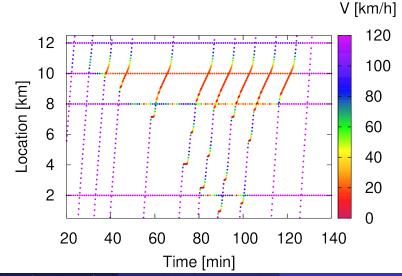

# Cross-Sectional Measurements by Induction (e.g. A5/Frankfurt)





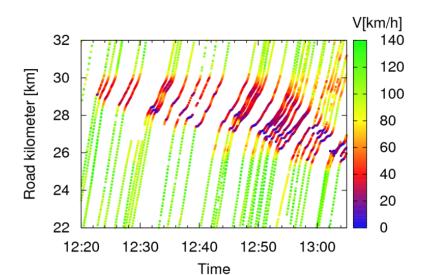

http://traffic-flow-dynamics.org/traffic-states

# Trajectory Data: Treiterer (1970)




Arne Kesting (www.akesting.de)

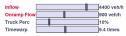
# Trajectory Data: Coifman (Highway 99, second lane)




# Sample of Trajectories: Floating-Car Data (FCD)



#### Traffic Flow Empirics: Breakdown and Congestion Pattern


# Sample of Trajectories: Floating-Car Data (FCD)



# Open System: Traffic Flow Dynamics at Bottleneck



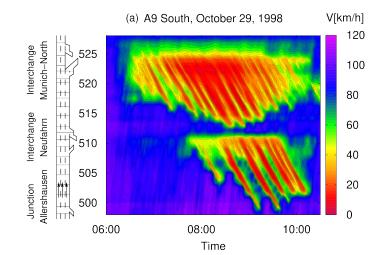




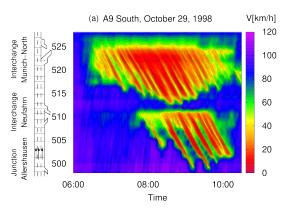
#### Car-Following Behavior

| Max Speed v0 | Î | 108 km/h             |
|--------------|---|----------------------|
| Time Gap T   |   | 1.4 s                |
| Max Accel a  |   | 0.3 m/s <sup>2</sup> |

#### Lane-Changing Behavior

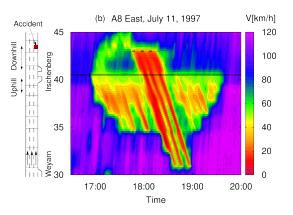

| Politeness        | 1 | 0.1 m/s <sup>2</sup>  |
|-------------------|---|-----------------------|
| LC Threshold      | 1 | 0.4 m/s <sup>2</sup>  |
| Right Bias Cars   |   | 0.05 m/s <sup>2</sup> |
| Right Bias Trucks |   | 0.2 m/s <sup>2</sup>  |

- · Change the road geometry by dragging
- · Click onto the road to disturb traffic flow
- Drag obstacles or construction vehicles to create new bottlenecks
- Drag traffic lights to the road and click on them to toggle between red and light
- · Use the info button repeatedly for more info


#### www.traffic-simulation.de

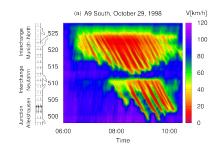
Traffic Flow Empirics: Breakdown and Congestion Patterns

#### Spatio-Temporal Dynamics from Loop Detector Data




## Characteristic Speeds of Traffic Jam Fronts

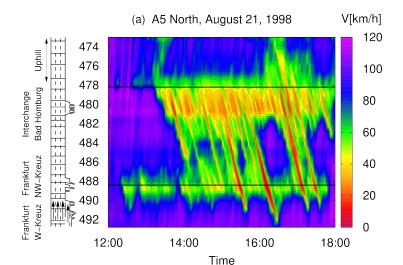



- Downstream jam front:
  - Fixed (at bottleneck): V = 0
  - Moving:  $V \approx -15 \,\mathrm{km/h}$
- Upstream jam front
  - No charact. speed
  - Balance of in-/out-flow
  - (demand / supply)
- Frequency of waves:
  - Depends on bottleneck strength

#### Flow Breakdown at Bottlenecks



- Flow Breakdown at bottlenecks
- Permanent at fixed locations:
  - on-/off-ramps, uphill gradients, traffic light, etc.
- Spontaneous:
  - accident, etc snowplough, etc.
  - (Moving bottleneck: snowplough)

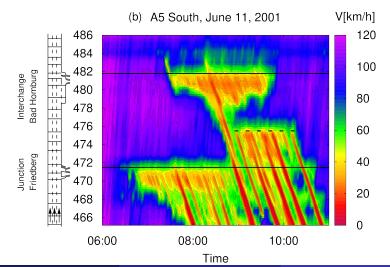

#### Definition of Bottleneck




#### Bottleneck

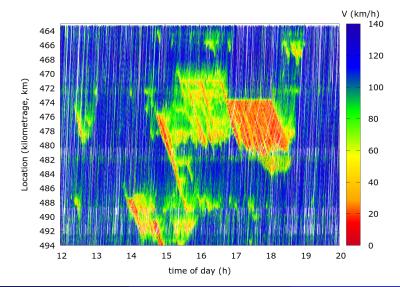
We define a *bottleneck* as a local reduction of the road capacity. Bottlenecks can be *permanent* attributes of the infrastructure (e.g., on-ramps, off-ramps, roadworks, etc.) or *temporary*, e.g., when caused by accidents.

# Characteristic speed for all perturbations: $-15 \pm 3 \,\mathrm{km/h}$




#### Localized Congestion Patterns: Pinned or Moving




Traffic Flow Empirics: Breakdown and Congestion Pattern

## Rich Spatio-Temporal Congestion Patterns (Loop Data)



Arne Kesting (www.akesting.de)

# Rich Spatio-Temporal Congestion Patterns (FCD)



### Three Ingredients for Traffic Flow Breakdown

| Energia de la construcción de la |                             | A constraint of the second secon |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • www.traffic-simulation.de |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### 3 Conditions for Traffic Flow Breakdown

- High traffic load (pre-condition for propagating perturbations)
- Active Bottleneck ('weakest link')
- Disturbances caused by individual drivers (as trigger)

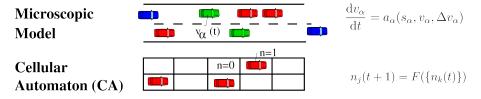
- Traffic Flow Dynamics: Instability and Traffic Breakdown
- ② Collective Dynamics: Empirical Data and Congestion Patterns
- Traffic Modeling: Dynamics vs. Planning
- Traffic Observables and Flow-Density Relation
- Solution Modeling: Fundamental Diagram and First-Order Models

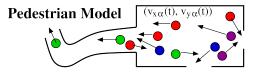
## Traffic Flow Models

| Time Scale       | Field            | Models                             | Aspect of Traffic (examples)     |
|------------------|------------------|------------------------------------|----------------------------------|
| $< 0.1  {\rm s}$ | vehicle dynamics | sub-microscopic                    | control of engine and brakes     |
| 1 s              |                  |                                    | reaction time, time gap          |
| 10 s             | traffic flow     | car-following models               | acceleration and deceleration    |
| 1 min            | dynamics         | macroscopic models                 | cycle period of traffic lights   |
| 10 min           |                  |                                    | stop-and-go waves                |
| 1 h              |                  |                                    | peak hour                        |
| 1 day            | transportation   | route assignment<br>traffic demand | daily demand pattern             |
| 1 year           | planning         | traffic demand                     | building/changing infrastructure |
| 5 years          | plaining         | statistics                         | socioeconomic structure          |
| 50 years         |                  | age pyramid                        | demographic change               |

#### Traffic Modeling Aspects: Dynamics ↔ Planning

- Common: Time-dependent traffic phenomena
- *Temporal:* Minutes/hours ↔ hours/days/years
- Objective: Externally given demand and infrastructure ↔ Dynamics of demand, changes in infrastructure, policies, land-use
- Subjective: Human (automated) driving behavior (accelerating, braking, lane-changing, turning, etc) ↔ Trip, mode, route, ... choice


#### Traffic *Flow* Dynamics


Collective effects and phenomena arising from accelerating, braking, lane-changing behavior of vehicle-driver units

# Model Categories



$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left( \rho V_e(\rho) \right) = 0$$





$$\frac{\mathrm{d}\vec{v}_{\alpha}}{\mathrm{d}t} = \vec{a}_{\alpha} \left( \vec{v}_{\alpha}, \vec{v}_{0\alpha}, \{ \vec{x}_{\beta} \}, \mathsf{Walls} \ \dots \ \right)$$

### Mathematical Structure

#### • Partial differential equations

Both location x and time t continuous as independent vars, e.g. V(x,t) (Lighthill-Witham-Richards, 1955/56)

#### Coupled ordinary differential equations

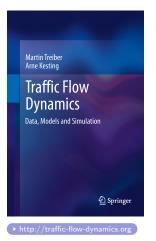
Continuous state vars depend on time only, e.g.  $v_{\alpha}(t)$ , and on other vehicles. *Car-following models*, e.g.  $\bigcirc$  Intelligent Driver Model, 2000

#### Coupled iterated maps

Discrete time steps  $\Delta t$  (as *parameter*) with continous state, e.g.  $x_{\alpha}(t)$ ,  $v_{\alpha}(t)$ 

#### Celluar Automata

All variables discrete: Space devided into fixed cells, time update in fixed intervals, e.g. Nagel-Schreckenberg model, 1992


• Discrete state, continous in time

e.g. lane-changing models (with integer-based lane index)

• Static models (traffic stream models)

Pair-wise relations between macrosopic state vars, e.g. fundamental

#### References





- Traffic Flow Dynamics: Instability and Traffic Breakdown
- Ollective Dynamics: Empirical Data and Congestion Patterns
- Traffic Modeling: Dynamics vs. Planning
- **Iraffic Observables and Flow-Density Relation**
- Solution Modeling: Fundamental Diagram and First-Order Models

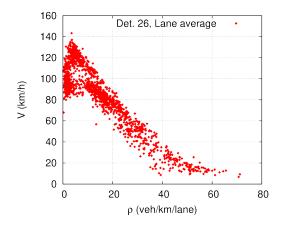
# Traffic Flow Observables

#### Definition (Traffic Flow Q)

Number of vehicles  $\Delta N$  passing a cross-section at x within a time interval  $\Delta t$ :

$$Q(x,t) = \frac{\Delta N}{\Delta t}$$

#### Definition (Average Speed V)


(Arithmetic) mean speed of the  $\Delta N$  vehicles passing a cross-section at x during an aggregation interval  $\Delta t$ .

#### Definition (Traffic Density $\rho$ )

Number of vehicles N on a road segment  $\Delta x$  at a given time t:

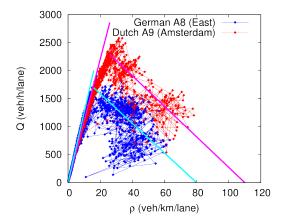
$$\rho(x,t) = \frac{N}{\Delta x}$$

### Speed-Density Relation from Loop Detectors (all lanes)



Why does the average speed decrease again for small densities?

Arne Kesting (www.akesting.de)


Traffic Observables and Flow-Density Relation

#### Speed-Density Relation: Desired Speed



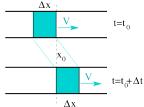
- $\rho \approx 0 :$  drivers usually not influenced by others
- For  $\rho \to 0$ : average free speed  $V_0$  (also: desired speed)
- Minimum of actual desired speed, physically possible attainable speed, speed limit

#### Flow-Density Relation



Determine the maximum density  $\rho_{\max}$ , the maximum flow, and the *capacity drop* using the fit lines.

- Traffic Flow Dynamics: Instability and Traffic Breakdown
- **2** Collective Dynamics: Empirical Data and Congestion Patterns
- Traffic Modeling: Dynamics vs. Planning
- Traffic Observables and Flow-Density Relation
- Macroscopic Modeling: Fundamental Diagram and First-Order Models


# Macroscopic (First Order) Models

- Models for spatio-temporal dynamics of  $\rho(x,t),Q,V$
- Foundations of every macroscopic traffic model:
  - Hydrodynamic Relation  $Q = \rho V$
  - Continuity equation: derived from conservation of vehicle flows
  - $\bullet~$  Both equations parameter-free  $\rightarrow~$  hold for any macroscopic model
- Lighthill-Witham Richards (LWR) Models
- 2 LWR for triangular fundamental diagram

### Hydrodynamic Flow-Density Relation

• 'Flow equals density times speed'

$$Q(x,t) = \rho(x,t)V(x,t)$$
 check:  $\frac{N}{\Delta t} = \frac{N}{\Delta x}\frac{\Delta x}{\Delta t}$ 



Derivation:  $\Delta n = \rho \Delta x$  vehicles pass  $x_0$  in  $\Delta t = \Delta x/V$ 

$$\Rightarrow$$
 for  $x_0$ :  $Q = \frac{\Delta n}{\Delta t} = \frac{\rho \Delta x}{\Delta t} = \rho V$ 

## Lighthill-Whitham-Richards Model (1955/1956)

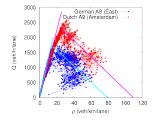
• Continuity equation is partial differential equation for  $\rho$  and V:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho V)}{\partial x} = 0$$

- Describes rate of change in density in terms of gradients of flow
- With hydrodynamic relation  $Q = \rho V$  third quantity can be derived
- Additional equation for flow (or speed) needed to 'complete' the model

#### Macroscopische First Order Models

Since the continuity equation is completely determined by the geometry of the road infrastructure, the macroscopic models differ in their modeling of speed or flow, only.


## Lighthill-Whitham-Richards Model (1955/1956)

Assumption: Q or V always in local equilibrium w.r.t. actual density
Q resp. V follows *instantaneously* ρ:

$$Q(x,t) = Q_{\mathsf{e}}(\rho(x,t)) \quad \text{resp.} \quad V(x,t) = V_{\mathsf{e}}(\rho(x,t)).$$

- Q(x,t) and V(x,t) coupled to  $\rho(x,t)$  (static equilibrium)
- Speed-Density relation:  $V_e(\rho)$
- Fundamental diagram:  $Q_e(\rho) = \rho V_e(\rho)$

### Flow-Density Relation and Fundamental Diagram



#### Definition

The *flow-density diagram* represents aggregated empirical data that generally describes *non-stationary heterogeneous* traffic, i.e., different driver-vehicle units far from equilibrium.

The *fundamental diagram* describes the theoretical relation between density and flow in *stationary homogeneous* traffic, i.e., the steady state equilibrium of identical driver-vehicle units.

### Lighthill-Whitham-Richards Model (LWR)

Continuity equation (homogenous road segment)

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho V)}{\partial x} = 0$$

With chain rule

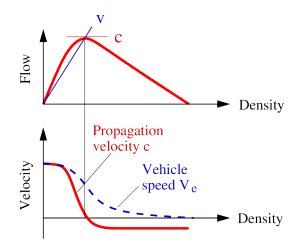
$$\frac{\partial Q_e}{\partial x} = \frac{\mathsf{d}Q_e(\rho)}{\mathsf{d}\rho} \frac{\partial \rho}{\partial x}$$

LWR Model (homogenous road segment)

$$\frac{\partial \rho}{\partial t} + \frac{\mathrm{d} Q_e(\rho)}{\mathrm{d} \rho} \,\, \frac{\partial \rho}{\partial x} = 0$$

- Inhomogenous segment or on-/off-ramps ightarrow additional terms
- $Q_e(\rho)$  not specific  $\rightarrow$  LWR Model *class*
- Only one dynamic equation  $\rightarrow$  First-order models

### Propagation of Density Variations


- Non-linear wave equations describe so-called kinematic waves
- Propagation velocity  $\tilde{c}$  for those waves (density variations)

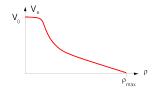
$$\tilde{c}(\rho) = \frac{\mathsf{d}Q_e}{\mathsf{d}\rho} = \frac{\mathsf{d}(\rho V_e(\rho))}{\mathsf{d}\rho}$$

- $\tilde{c}$  depends on density
- Proportional to gradient of fundamental diagram
- $\rightarrow$  Density variations propagate *in* or *against* driving direction

#### Mod

### Propagation of Density Variations

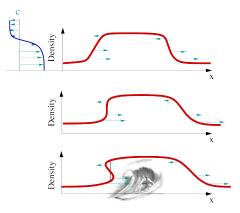



### Relative Propagation Velocity w.r.t. Vehicle Speed

With

$$\tilde{c}(\rho) = Q'_e(\rho) = \frac{\mathsf{d}(\rho V_e(\rho))}{\mathsf{d}\rho} = V_e(\rho) + \rho V'_e(\rho)$$

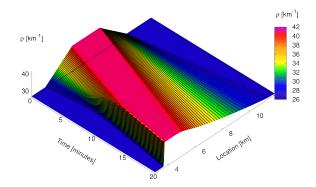
 $\Rightarrow$  relative velocity w.r.t. vehicle speed V


$$\tilde{c}_{\mathsf{rel}}(\rho) = \tilde{c}(\rho) - V = \tilde{c}(\rho) - V_e(\rho) = \rho V'_e(\rho)$$

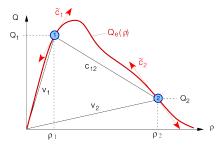


- $V_e'(\rho) \leq 0 \Rightarrow$  density perturbations propagate backwards from drivers' perspective
- Microscopic view: drivers react only to leading vehicle but not to vehicles behind

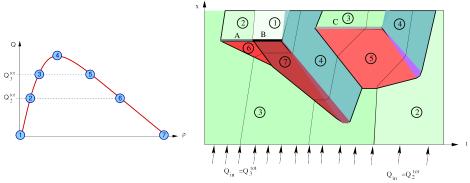
### Shock Waves in LWR


LWR equation describes density waves with different propagation velocities (the lower the density, the higher the propagation velocity)



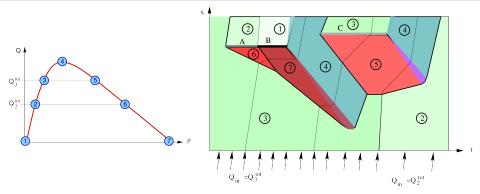

 $\Rightarrow$  Upstream wave front becomes steeper while downstream front disperses

### Shock Waves in LWR


- Transition from free  $\rightarrow$  congested: traffic becomes discontinuous
- Vehicles from congested  $\rightarrow$  free: 'traffic' accelerates less and less (*dispersion fan*)
- $\implies$  LWR unrealistic

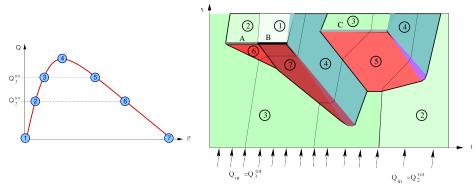


### Three Characteristic Velocities in LWR

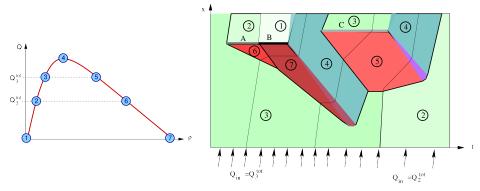



- The propagation velocity of density variations č(ρ) = Q'<sub>e</sub>(ρ) is given by the slope of the fundamental diagram.
- The propagation velocity of shock fronts c<sub>12</sub> is given by the slope of the secant connecting points of the fundamental diagram corresponding to traffic on either side of the front.
- The vehicle speed V<sub>e</sub> = Q<sub>e</sub>(ρ)/ρ is given by the slope of the secant connecting the origin with the corresponding point on the fundamental diagram.

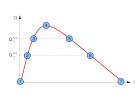


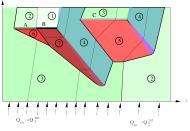

- Inflow:  $Q_{in}$  at 3 (later decrease to 2)
- Temporary bottlenecks: A with capacity  $K_A = Q_2^{\text{tot}}$ , B full road block with  $K_B = 0$ , and C with capacity  $K_C = Q_3^{\text{tot}}$
- 3 trajectories indicating vehicle speeds
- Transition from higher to lower densities: 'soften' over time while remaining discontinous (shocks)

### Example: Spatio-Temporal Dynamics in LWR



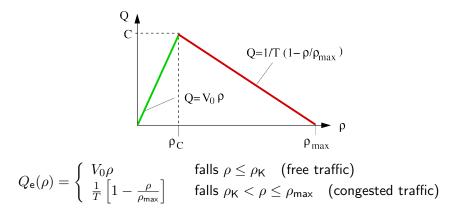

• A reduces flow to  $K_A = Q_2^{\text{tot}}$ , since  $Q_{\text{in}} > K_A \rightarrow$  traffic congestion


- Downstream of bottleneck free traffic (Zustand 2)
- Congestion upstream (Zustand ®), jam front with  $c_{36} < 0$ , stationary at bottleneck  $c_{62} = 0$
- Velocity in congested traffic  $V_6 = Q_6/\rho_6 > 0$




- $\bullet\,$  Full road block B reduced flow up- and downstream to 0
- Upstream: maximum density (Zustand ⑦), downstream empty road (Zustand ①)
- Transition speeds  $c_{67} < c_{37} < c_{36} < 0$  and  $c_{71} = 0$  of course




- Blockage B deactivated with transition velocity  $c_{74}\approx c_{67}<0$
- Transition from standstill to maximum (out-)flow
- (Softening (*dispersion*) often unrealistic)





- $\bullet~C:$  up- and downstream flows  $Q_3^{\rm tot}=Q_5^{\rm tot}$  ,  $\to c_{53}=0$
- Growing traffic jam propagates in upstream direction with  $c_{\rm 45} < 0$
- Stationary transition  $c_{35} = 0$  at bottleneck
- Reduced inflow: shrinking traffic jam with downstream front velocity  $c_{25}>0\,$
- Deactivation of bottleneck: transition from congested  $\to$  maximum flow progages backwards with  $c_{54}<0$
- $\bullet~$  Until reaches upstream jam front  $\rightarrow$  complete resolution of traffic jam

#### LWR with Triangular Fundament Diagram



- Easy to solve
- Two propagation velocities for perturbations, and no dispersion
- Section-Based Model, discrete version: Cell-Transmission Model (CTM)

### Beyond LWR: Macroscopic Models with Dynamic Velocity

- LWR with single dynamic equation, V(x,t) without own dynamics
- Instantaneous adaptation of vehicle speed unrealistic (finite acceleration)
- LWR without *traffic instabilities* (growing stop-and-go waves)
- $\bullet \ \rightarrow$  Not velocity but acceleration as function of traffic situation
- V second dynamic variable (second-order models)